High-temperature structural materials undergo oxidation during the service, and stress would generate in the oxide film. Understanding the coupling effect between stress and oxidation contributes to the understanding of material degradation and failure during the oxidation process. Here, we propose a model to investigative the coupling effect of stress and oxidation at high temperature by considering the three-stage oxidation process, where both the interface reaction and the diffusion process are present. The governing equations including the oxidation kinetics and stress equilibrium for isothermal oxidation under stress-oxidation coupling effect have been derived. The theory is validated by comparing with the experimental results of SiO2 grown on Si substrate. Results show that the coupling of stress and oxidation influences the growth of the oxide film by affecting all three stages of the oxidation process.

1.
E. A.
Basuki
,
D. H.
Prajitno
, and
F.
Muhammad
, “
Alloys developed for high temperature applications
,”
AIP Conf. Proc.
1808
,
020003
(
2017
).
2.
R.
Arunachalam
and
M. A.
Mannan
,
Mach. Sci. Technol.
4
,
127
(
2000
).
3.
S.
Schmidt
,
S.
Beyer
,
H.
Knabe
,
H.
Immich
,
R.
Meistring
, and
A.
Gessler
,
Acta Astronaut.
55
,
409
(
2004
).
4.
X.
Gao
,
G.
Yu
,
J.
Xue
, and
Y.
Song
,
Ceram. Int.
43
,
5255
(
2017
).
5.
H.
Su
,
X.
Fang
,
Z.
Qu
,
C.
Zhang
,
B.
Yan
, and
X.
Feng
,
Exp. Mech.
56
,
659
(
2016
).
6.
D. R.
Clarke
,
Curr. Opin. Solid State Mater. Sci.
6
,
237
(
2002
).
7.
A. M.
Limarga
,
D. S.
Wilkinson
, and
G. C.
Weatherly
,
Scr. Mater.
50
,
1475
(
2004
).
8.
X.
Li
,
A.
Ermakov
,
V.
Amarasinghe
,
E.
Garfunkel
,
T.
Gustafsson
, and
L. C.
Feldman
,
Appl. Phys. Lett.
110
,
141604
(
2017
).
9.
E. P.
Eernisse
,
Appl. Phys. Lett.
35
,
8
(
1979
).
10.
11.
M.
Chen
,
Y.
Yue
, and
Y.
Ju
,
J. Appl. Phys.
111
,
104305
(
2012
).
12.
H. E.
Evans
,
J. Electrochem. Soc.
125
,
1180
(
1978
).
13.
X.
Dong
,
X.
Feng
, and
K. C.
Hwang
,
J. Appl. Phys.
112
,
023502
(
2012
).
14.
A.
Ludsteck
,
J.
Schulze
,
I.
Eisele
,
W.
Dietl
, and
Z.
Nenyei
,
J. Appl. Phys.
95
,
2827
(
2004
).
15.
Y.
Zhang
,
X. C.
Zhang
, and
S. T.
Tu
,
AIP Adv.
5
,
097105
(
2015
).
16.
K. C.
Chou
,
J. Am. Ceram. Soc.
89
,
1568
(
2006
).
17.
S. J.
Grutzik
,
E.
Milosevic
,
B. L.
Boyce
, and
A. T.
Zehnder
,
J. Appl. Phys.
118
,
195304
(
2015
).
18.
H.
Zhou
,
J.
Qu
, and
M.
Cherkaoui
,
Comput. Mater. Sci.
48
,
842
(
2010
).
19.
H.
Zhou
,
J.
Qu
, and
M.
Cherkaoui
,
Mech. Mater.
42
,
63
(
2010
).
20.
X.
Dong
,
X.
Fang
,
X.
Feng
, and
K. C.
Hwang
,
J. Am. Ceram. Soc.
96
,
44
(
2013
).
21.
X.
Dong
,
X.
Feng
, and
K. C.
Hwang
,
Chem. Phys. Lett.
614
,
95
(
2014
).
22.
H.
Wang
,
Y.
Suo
, and
S.
Shen
,
Oxid. Met.
83
,
507
(
2015
).
23.
P.
Yu
,
H.
Wang
,
J.
Chen
, and
S.
Shen
,
J. Mech. Phys. Solids
104
,
57
(
2017
).
24.
Y.
Suo
and
S.
Shen
,
J. Appl. Phys.
114
,
164905
(
2013
).
25.
Y.
Suo
and
S.
Shen
,
Acta Mech.
226
,
3375
(
2015
).
26.
D. B.
Kao
,
J. P.
Mcvittie
,
W. D.
Nix
, and
K. C.
Saraswat
,
IEEE Trans. Electron Devices
35
,
25
(
1988
).
27.
H.
Coffin
,
C.
Bonafos
,
S.
Schamm
,
N.
Cherkashin
,
G. B.
Assayag
,
A.
Claverie
,
M.
Respaud
,
P.
Dimitrakis
, and
P.
Normand
,
J. Appl. Phys.
99
,
044302
(
2006
).
28.
B. E.
Deal
and
A. S.
Grove
,
J. Appl. Phys.
36
,
3770
(
1965
).
29.
F.
Pettit
,
R.
Yinger
, and
J. B.
Wagner
, Jr.
,
Acta Metall.
8
,
617
(
1960
).
30.
H.
Haftbaradaran
,
J.
Song
,
W. A.
Curtin
, and
H.
Gao
,
J. Power Sources
196
,
361
(
2011
).
31.
M. A.
Brown
,
A. J.
Rosakis
,
X.
Feng
,
Y.
Huang
, and
E.
Üstündag
,
Int. J. Solids Struct.
44
,
1755
(
2007
).
32.
X.
Feng
,
Y.
Huang
, and
A. J.
Rosakis
,
Int. J. Solids Struct.
45
,
3688
(
2008
).
33.
R. S.
Hay
,
J. Appl. Phys.
111
,
063527
(
2012
).
34.
J.
Song
,
H.
Jiang
,
W. M.
Choi
,
D. Y.
Khang
,
Y.
Huang
, and
J. A.
Rogers
,
J. Appl. Phys.
103
,
014303
(
2008
).
35.
J. Y.
Yen
and
J. G.
Hwu
,
J. Appl. Phys.
89
,
3027
(
2001
).
37.
D. L.
Beke
,
I. A.
Szabó
,
Z.
Erdélyi
, and
G.
Opposits
,
Mater. Sci. Eng., A
387–389
,
4
(
2004
).
You do not currently have access to this content.