Optical damage limits the application range of congruent LiNbO3. This problem is commonly overcome by adding optical-damage-resistant cations. Here, the influence of doping with optical-damage-resistant Mg and Zn on the ionic and piezoelectric contributions to the dielectric permittivity is investigated in a broad frequency range (1 mHz–2 THz). It is shown that the two dopants have radically different influences on the variation of ionic permittivity with doping, in spite of their similarities with respect to the crystallographic structure. Raman spectroscopy reveals that the difference in permittivity can be traced to the effect of Mg and Zn doping on the susceptibility of the phonon modes. Both observations point to differences in the defect incorporation mechanisms.

1.
A. A.
Ballman
, “
Growth of piezoelectric and ferroelectric materials by the CzochraIski technique
,”
J. Am. Ceram. Soc.
48
(
2
),
112
113
(
1965
).
2.
K. K.
Wong
,
Properties of Lithium Nionate
(
INSPEC
,
2002
).
3.
T.
Volk
and
M.
Wöhlecke
,
Lithium Niobate Defects, Photorefraction and Ferroelectric Switching
(
Springer
,
2008
).
4.
H.
Donnerberg
,
S. M.
Tomlinson
,
C. R. A.
Catlow
, and
O. F.
Schirmer
, “
Computer-simulation studies of intrinsic defects in LiNbO3 crystals
,”
Phys. Rev. B
40
(
17
),
11909
11916
(
1989
).
5.
A. P.
Wilkinson
,
A. K.
Cheetham
, and
R. H.
Jarman
, “
The defect structure of congruently melting lithium niobate
,”
J. Appl. Phys.
74
(
5
),
3080
3083
(
1993
).
6.
H. B.
Serreze
and
R. B.
Goldner
, “
Study of the wavelength dependence of optically induced birefringence change in undoped LiNbO3
,”
Appl. Phys. Lett.
22
(
12
),
626
627
(
1973
).
7.
A.
Ashkin
,
G. D.
Boyd
,
J. M.
Dziedzic
,
R. G.
Smith
,
A. A.
Ballman
,
J. J.
Levinstsein
, and
K.
Nassau
, “
Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3
,”
Appl. Phys. Lett.
9
(
1
),
72
74
(
1966
).
8.
T.
Volk
,
M.
Wöhlecke
,
N.
Rubinina
,
A.
Reichert
, and
N.
Razumovski
, “
Optical-damage-resistant impurities (Mg, Zn, In, Sc) in lithium niobate
,”
Ferroelectrics
183
(
1
),
291
300
(
1996
).
9.
J. Q.
Yao
,
W. Q.
Shi
,
J. E.
Millerd
,
E.
Garmire
, and
M.
Birnbaum
, “
Room-temperature 1.06-0.53-Mum second-harmonic generation with MgO: LiNbO
,”
Opt. Lett.
15
(
23
),
1339
1341
(
1990
).
10.
J. L.
Nightingale
,
W. J.
Silva
,
G. E.
Reade
,
A.
Rybicki
,
W. J.
Kozlovsky
, and
R. L.
Byer
, “
Fifty percent conversion efficiency second harmonic generation in magnesium oxide doped lithium niobate
,”
Proc. SPIE
0681
(
1987
).
11.
M.
Bode
,
P. K.
Lam
,
I.
Freitag
,
A.
Tunnermann
,
H.
Bachor
, and
H.
Welling
, “
Continuously-tunable doubly resonant optical parametric oscillator
,”
Opt. Commun.
148
,
117
121
(
1998
).
12.
T.
Volk
,
M.
Wöhlecke
, and
N.
Rubinina
, “
Optical damage resistance in lithium niobate
,” in
Photorefractive Materials and Their Applications
(
Springer
,
2007
), Vol.
2
, pp.
165
203
.
13.
T. S.
Chernaya
,
B. A.
Maksimov
,
T. R.
Volk
,
N. M.
Rubinina
, and
V. I.
Simonov
, “
Zn atoms in lithium niobate and mechanism of their insertion into crystals
,”
JETP Lett.
73
(
2
),
103
106
(
2001
).
14.
H.
Donnerberg
, “
Comments on the defect chemistry of magnesium-doped lithium niobate (LiNbO3)
,”
J. Solid State Chem.
123
(
2
),
208
214
(
1996
).
15.
S.
Sulyanov
,
B.
Maximov
,
T.
Volk
,
H.
Boysen
,
J.
Schneider
,
N.
Rubinina
, and
Th.
Hansen
, “
Neutron and X-ray study of stoichiometric and doped LiNbO3:Zn0.08
,”
Appl. Phys. A
74
,
s1031
s1033
(
2002
).
16.
B. C.
Grabmaier
,
W.
Wersing
, and
W.
Koestler
, “
Properties of undoped and MgO-doped LiNbO3. correlation to the defect structure
,”
J. Cryst. Growth
110
,
339
(
1991
).
17.
P. C.
Barbosa
,
J. A. C.
de Paiva
,
J. M.
Filho
,
A. C.
Hernandes
,
J. P.
Andreeta
, and
A. S. B.
Sombra
, “
Dielectric relaxation process and pyroelectric currents in LiNbO3: Fe single crystals
,”
Phys. Status Solidi
125
,
723
729
(
1991
).
18.
T.
Granzow
, “
Polaron-mediated low-frequency dielectric anomaly in reduced LiNbO3: Ti
,”
Appl. Phys. Lett.
111
,
022903
(
2017
).
19.
N.
Meyer
,
G. F.
Nataf
, and
T.
Granzow
, “
Field induced modification of defect complexes in magnesium-doped lithium niobate
,”
J. Appl. Phys.
116
(
24
),
244102
(
2014
).
20.
C.
Cochard
,
T.
Spielmann
,
M. K.
Matters-Kammerer
,
A. R.
van Dommele
,
A.
Halpin
,
J.
Gomez-Rivas
, and
T.
Granzow
, “
Tunable polar dielectrics for applications at millimeter wavelengths
,” in
2016 41st International Conference on Infrared, Millimeter, Terahertz Waves
(
IEEE
,
2016
), pp.
1
2
.
21.
C.
Cochard
,
T.
Spielmann
,
A.
Halpin
, and
T.
Granzow
, “
Broadband characterization of congruent lithium niobate from mHz to optical frequencies
,”
J. Phys. D: Appl. Phys.
50
,
36LT01
(
2017
).
22.
U.
Schlarb
and
K.
Betzler
, “
Influence of the defect structure on the refractive indices of undoped and Mg-doped lithium niobate
,”
Phys. Rev. B
50
(
2
),
751
757
(
1994
).
23.
U.
Schlarb
,
B.
Matzas
,
A.
Reichert
,
K.
Betzler
,
M.
Wöhlecke
,
B.
Gather
, and
T.
Volk
, “
Refractive indices of Zn/In-co-doped lithium niobate
,”
Ferroelectrics
185
(
1
),
269
272
(
1996
).
24.
M.
Unferdorben
,
Z.
Szaller
,
I.
Hajdara
,
J.
Hebling
, and
P.
Laszlo
, “
Measurement of refractive index and absorption coefficient of congruent and stoichiometric lithium niobate in the terahertz range
,”
J. Infrared, Millimeter, Terahertz Waves
36
(
12
),
1203
1209
(
2015
).
25.
M. D.
Fontana
and
P.
Bourson
, “
Microstructure and defects probed by Raman spectroscopy in lithium niobate crystals and devices
,”
Appl. Phys. Rev.
2
(
4
),
040602
(
2015
).
26.
A.
Ridah
,
M.
Fontana
, and
P.
Bourson
, “
Temperature dependence of the Raman modes in LiNbO3 and mechanism of the phase transition
,”
Phys. Rev. B
56
(
10
),
5967
5973
(
1997
).
27.
M.
DiDomenico
,
S. H.
Wemple
,
S. P. S.
Porto
, and
R. P.
Bauman
, “
Raman spectrum of single-domain BaTiO3
,”
Phys. Rev.
174
(
2
),
522
530
(
1968
).
28.
V.
Caciuc
,
A.
Postnikov
, and
G.
Borstel
, “
Ab initio structure and zone-center phonons in LiNbO3
,”
Phys. Rev. B
61
(
13
),
8806
8813
(
2000
).
29.
K.
Lengyel
,
L.
Kovács
,
Á.
Péter
,
K.
Polgár
, and
G.
Corradi
, “
The effect of stoichiometry and Mg doping on the Raman spectra of LiNbO3:Mg crystals
,”
Appl. Phys. B: Lasers Opt.
87
(
2
),
317
322
(
2007
).
30.
M. L.
Hu
,
C. T.
Chia
,
J. Y.
Chang
,
W. S.
Tse
, and
J. T.
Yu
, “
Low-temperature Raman study of zinc-doped lithium niobate crystal powders
,”
Mater. Chem. Phys.
78
(
2
),
358
362
(
2003
).
31.
R.
Mouras
,
M. D.
Fontana
,
P.
Bourson
, and
A. V.
Postnikov
, “
Lattice site of Mg ion in LiNbO3 crystal determined by Raman spectroscopy
,”
J. Phys.: Condens. Matter
12
,
5053
5059
(
2000
).
32.
F.
Abdi
,
M.
Aillerie
,
M.
Fontana
, and
P.
Bourson
, “
Influence of Zn doping on electrooptical properties and structure parameters of lithium niobate crystals
,”
Appl. Phys. B
68
,
795
799
(
1999
).
33.
N.
Iyi
,
K.
Kitamura
,
Y.
Yajima
,
S.
Kimura
,
Y.
Furukawa
, and
M.
Sato
, “
Defect structure model of MgO-doped LiNbO3
,”
J. Solid State Chem.
118
,
148
152
(
1995
).
34.
T.
Volk
,
B.
Maximov
,
T.
Chernaya
,
N.
Rubinina
,
M.
Wöhlecke
, and
V.
Simonov
, “
Photorefractive properties of LiNbO3: Zn crystals related to the defect structure
,”
Appl. Phys. B
72
,
647
652
(
2001
).
35.
A. V.
Yatsenko
,
S. V.
Yevdokimov
,
D. Y. U.
Sugak
, and
I. M.
Solskii
, “
NMR analysis of Mg ion localization in LiNbO3 crystal
,”
Acta Phys. Pol., A
117
(
1
),
166
169
(
2010
).
36.
X.
He
and
D.
Xue
, “
Doping mechanism of optical-damage-resistant ions in lithium niobate crystals
,”
Opt. Commun.
265
,
537
541
(
2006
).
37.
S.
Margueron
,
A.
Bartasyte
,
A. M.
Glazer
,
E.
Simon
,
J.
Hlinka
,
I.
Gregora
, and
J.
Gleize
, “
Resolved E-symmetry zone-centre phonons in LiTaO3 and LiNbO3
,”
J. Appl. Phys.
111
(
10
),
104105
(
2012
).

Supplementary Material

You do not currently have access to this content.