Nested Hall thrusters use multiple, concentric discharge channels to increase thrust density. They have shown enhanced performance in multi-channel operation relative to the superposition of individual channels. The X2, a two-channel nested Hall thruster, was used to investigate the mechanism behind this improved performance. It is shown that the local pressure near the thruster exit plane is an order of magnitude higher in two-channel operation. This is due to the increased neutral flow inherent to the multi-channel operation. Due to the proximity of the discharge channels in nested Hall thrusters, these local pressure effects are shown to be responsible for the enhanced production of thrust during multi-channel operation via two mechanisms. The first mechanism is the reduction of the divergence angle due to an upstream shift of the acceleration region. The displacement of the acceleration region was detected using laser induced fluorescence measurements of the ion velocity profile. Analysis of the change in beam divergence indicates that, at an operating condition of 150 V and 30 A, this effect increases the thrust by 8.7 ± 1.2 mN. The second mechanism is neutral ingestion from the adjacent channel resulting in a 2.0 + 0/−0.2 mN increase in thrust. Combined, these mechanisms are shown to explain, within uncertainty, the 17 ± 6.2 mN improvement in thrust during dual channel operation of the X2.

1.
R. R.
Hofer
,
D.
Herman
,
J. E.
Polk
,
H.
Kamhawi
, and
I. G.
Mikellides
, “
Development approach and status of the 12.5 kW HERMeS Hall thruster for the solar electric propulsion technology demonstration mission
,” in
34th International Electric Propulsion Conference
, Hyogo-Kobe, Japan, IEPC-2015-186 (
2015
).
2.
R. R.
Hofer
,
H.
Kamhawi
,
I. G.
Mikellides
,
D. A.
Herman
,
J. E.
Polk
,
W.
Huang
,
J.
Yim
,
J.
Myers
, and
R.
Shastry
, “
Design methodology and scaling of the 12.5 kW HERMeS Hall thruster for the solar electric propulsion technology demonstration mission
,” in
62nd JANNAF Propulsion Meeting
, JANNAF-2015-3946, Nashville, TN (
2015
).
3.
D. M.
Goebel
and
J. E.
Polk
, “
Lanthanum hexaboride hollow cathode for the asteroid redirect robotic mission 12.5 kW Hall thruster
,” in
34th International Electric Propulsion Conference
, Hyogo-Kobe, Japan, IEPC-2015-43 (
2015
).
4.
R.
Liang
, “
The combination of two concentric discharge channels into a nested Hall-effect thruster
,” Ph.D. thesis (
University of Michigan
, Ann Arbor, MI,
2013
).
5.
R.
Florenz
, “
The X3 100-kW class nested-channel Hall thruster: Motivation, implementation, and initial performance
,” Ph.D. thesis (
University of Michigan
, Ann Arbor, MI,
2014
).
6.
J.
Brophy
,
R.
Gershman
,
N.
Strange
,
D.
Landau
,
R.
Merrill
, and
T.
Kerslake
, “
300-kW solar electric propulsion system configuration for human exploration of near-earth asteroids
,” in
47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit
, San Diego, CA (American Institute of Aeronautics and Astronautics,
2011
).
7.
R. R.
Hofer
and
T. M.
Randolph
, “
Mass and cost model for selecting thruster size in electric propulsion systems
,”
J. Propul. Power
29
,
166
177
(
2013
).
8.
V.
Zhurin
,
H.
Kaufman
, and
R.
Robinson
, “
Physics of closed drift thrusters
,”
Plasma Sources Sci. Technol.
8
,
R1
(
1999
).
9.
R.
Spores
,
J.
Monheiser
,
B. P.
Dempsey
,
D.
Wade
,
K.
Creel
,
D.
Jacobson
, and
G.
Drummond
, “
A solar electric propulsion cargo vehicle to support NASA lunar exploration program
,” in
25th International Electric Propulsion Conference
, Princeton, NJ, IEPC-2005-320 (
2005
), Vol.
31
.
10.
R.
Liang
and
A. D.
Gallimore
, “
Far-field plume measurements of a nested-channel Hall-effect thruster
,” AIAA Paper 2011-1016,
2011
.
11.
M. R.
Nakles
and
W. A.
Hargus
, “
Background pressure effects on ion velocity distribution within a medium-power Hall thruster
,”
J. Propul. Power
27
,
737
743
(
2011
).
12.
M. L. R.
Walker
, “
Effects of facility backpressure on the performance and plume of a Hall thruster
,” Ph.D. thesis (
United States Air Force
,
2005
).
13.
T.
Randolph
,
V.
Kim
,
H.
Kaufman
,
K.
Kozubsky
,
V. V.
Zhurin
, and
M.
Day
, “
Facility effects on stationary plasma thruster testing
,” in
23rd International Electric Propulsion Conference IEPC-93-93
(
1993
), pp.
13
16
.
14.
M. L. R.
Walker
,
A. L.
Victor
,
R. R.
Hofer
, and
A. D.
Gallimore
, “
Effect of backpressure on ion current density measurements in Hall thruster plumes
,”
J. Propul. Power
21
,
408
415
(
2005
).
15.
D. L.
Brown
and
A. D.
Gallimore
, “
Evaluation of facility effects on ion migration in a Hall thruster plume
,”
J. Propul. Power
27
,
573
585
(
2011
).
16.
R. R.
Hofer
and
A. D.
Gallimore
, “
The role of magnetic field topography in improving the performance of high-voltage Hall thrusters
,” AIAA Paper AIAA-2002-4111,
2002
.
17.
I. D.
Boyd
,
D. B.
Van Gilder
, and
X.
Liu
, “
Monte Carlo simulation of neutral xenon flows in electric propulsion devices
,”
J. Propul. Power
14
,
1009
1015
(
1998
).
18.
G. A.
Brid
,
Molecular Gas Dynamics and the Direct Simulation of Gas Flows
(
Oxford University Press
,
1994
).
19.
M. L.
Walker
and
A. D.
Gallimore
, “
Performance characteristics of a cluster of 5-kw laboratory Hall thrusters
,”
J. Propul. Power
23
,
35
43
(
2007
).
20.
J. L.
Rovey
,
M. L.
Walker
,
A. D.
Gallimore
, and
P. Y.
Peterson
, “
Magnetically filtered faraday probe for measuring the ion current density profile of a Hall thruster
,”
Rev. Sci. Instrum.
77
,
013503
(
2006
).
21.
R. J.
Cedolin
,
W. A.
Hargus
, Jr.
,
P. V.
Storm
,
R. K.
Hanson
, and
M. A.
Cappelli
, “
Laser-induced fluorescence study of a xenon Hall thruster
,”
Appl. Phys. B
65
,
459
469
(
1997
).
22.
J. W. A.
Hargus
and
M. A.
Cappelli
, “
Laser-induced fluorescence measurements of velocity within a Hall discharge
,”
Appl. Phys. B
72
,
961
969
(
2001
).
23.
G. J.
Williams
,
T.
Smith
,
M.
Domonkos
,
A.
Gallimore
, and
R.
Drake
, “
Laser-induced fluorescence characterization of ions emitted from hollow cathodes
,”
IEEE Trans. Plasma Sci.
28
,
1664
1675
(
2000
).
24.
W.
Huang
,
A. D.
Gallimore
, and
T. B.
Smith
, “
Two-axis laser-induced fluorescence of singly-charged xenon inside a 6-kW Hall thruster
,” in
49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition
, Orlando, Florida (
2011
).
25.
W.
Huang
,
A. D.
Gallimore
, and
T. B.
Smith
, “
Interior and near-wall ion velocity distribution functions in the H6 Hall thruster
,”
J. Propul. Power
29
,
1146
1154
(
2013
).
26.
S.
Mazouffre
, “
Laser-induced fluorescence diagnostics of the cross-field discharge of Hall thrusters
,”
Plasma Sources Sci. Technol.
22
,
013001
(
2013
).
27.
S. E.
Cusson
,
E. T.
Dale
, and
A. D.
Gallimore
, “
Investigation of channel interactions in nested Hall thruster
,”
J. Propul. Power
33
,
1037
1040
(
2017
).
28.
M. P.
Georgin
,
V.
Dhaliwal
, and
A.
Gallimore
, “
Investigation of channel interactions in a nested Hall thruster part i: Acceleration region velocimetry
,” in
52nd AIAA/SAE/ASEE Joint Propulsion Conference
(
2016
), p.
5030
.
29.
S. E.
Cusson
,
E. T.
Dale
, and
A.
Gallimore
, “
Investigation of channel interactions in a nested Hall thruster part ii: Probes and performance
,” in
52nd AIAA/SAE/ASEE Joint Propulsion Conference
(
2016
), p.
5029
.
30.
J. D.
Frieman
,
T. M.
Liu
, and
M. L.
Walker
, “
Background flow model of Hall thruster neutral ingestion
,”
J. Propul. Power
33
,
1087
1101
(
2017
).
31.
D. M.
Goebel
and
I.
Katz
,
Fundamentals of Electric Propulsion: Ion and Hall Thrusters
(
John Wiley & Sons
,
2008
), Vol.
1
.
32.
B. M.
Reid
and
A. D.
Gallimore
, “
Near-field ion current density measurements of a 6-kW Hall thruster
,” in
31st International Electric Propulsion Conference
, Ann Arbor, MI, IEPC-2009-124 (
2009
).
33.
R. R.
Hofer
,
L. K.
Johnson
,
D. M.
Goebel
, and
R. E.
Wirz
, “
Effects of internally mounted cathodes on Hall thruster plume properties
,”
IEEE Trans. Plasma Sci.
36
,
2004
2014
(
2008
).
34.
R. R.
Hofer
, “
Development and characterization of high-efficiency, high-specific impulse xenon Hall thrusters
,” Ph.D. thesis (
University of Michigan
,
2004
).
35.
D.
Gawron
,
S.
Mazouffre
,
N.
Sadeghi
, and
A.
Héron
, “
Influence of magnetic field and discharge voltage on the acceleration layer features in a Hall effect thruster
,”
Plasma Sources Sci. Technol.
17
,
025001
(
2008
).
36.
J.-P.
Boeuf
, “
Tutorial: Physics and modeling of Hall thrusters
,”
J. Appl. Phys.
121
,
011101
(
2017
).
37.
S.
Mazouffre
and
G.
Bourgeois
, “
Spatio-temporal characteristics of ion velocity in a Hall thruster discharge
,”
Plasma Sources Sci. Technol.
19
,
065018
(
2010
).
38.
W.
Huang
,
B.
Drenkow
, and
A.
Gallimore
, “
Laser-induced fluorescence of singly-charged xenon inside a 6-kW Hall thruster
,” AIAA Paper AIAA-2009-5355 (
2009
).
39.
M. J.
Sekerak
,
A. D.
Gallimore
,
D. L.
Brown
,
R. R.
Hofer
, and
J. E.
Polk
, “
Mode transitions in Hall-effect thrusters induced by variable magnetic field strength
,”
J. Propul. Power
32
,
903
917
(
2016
).
40.
J.
Boeuf
and
L.
Garrigues
, “
Low frequency oscillations in a stationary plasma thruster
,”
J. Appl. Phys.
84
,
3541
3554
(
1998
).
41.
E.
Choueiri
, “
Plasma oscillations in Hall thrusters
,”
Phys. Plasmas
8
,
1411
1426
(
2001
).
42.
E.
Chesta
,
C. M.
Lam
,
N. B.
Meezan
,
D. P.
Schmidt
, and
M. A.
Cappelli
, “
A characterization of plasma fluctuations within a Hall discharge
,”
IEEE Trans. Plasma Sci.
29
,
582
591
(
2001
).
43.
M. S.
McDonald
and
A. D.
Gallimore
, “
Rotating spoke instabilities in Hall thrusters
,”
IEEE Trans. Plasma Sci.
39
,
2952
2953
(
2011
).
44.
T.
Randolph
,
V.
Kim
,
H.
Kaufman
,
K.
Kozubsky
,
V.
Zhurin
, and
M.
Day
, “
Facility effects on stationary plasma thruster testing
,” in
23rd International Electric Propulsion Conference
(
1993
), pp.
13
16
.
You do not currently have access to this content.