The effects of oxygen-inserted (OI) layers on the diffusion of boron (B), phosphorus (P), and arsenic (As) in silicon (Si) are investigated, for ultra-shallow junction formation by high-dose ion implantation followed by rapid thermal annealing. The projected range (Rp) of the implanted dopants is shallower than the depth of the OI layers. Secondary ion mass spectrometry is used to compare the dopant profiles in silicon samples that have OI layers against the dopant profiles in control samples that do not have OI layers. Diffusion is found to be substantially retarded by the OI layers for B and P, and less for As, providing shallower junction depth. The experimental results suggest that the OI layers serve to block the diffusion of Si self-interstitials and thereby effectively reduce interstitial-aided diffusion beyond the depth of the OI layers. The OI layers also help to retain more dopants within the Si, which technology computer-aided design simulations indicate to be beneficial for achieving shallower junctions with lower sheet resistance to enable further miniaturization of planar metal-oxide-semiconductor field-effect transistors for improved integrated-circuit performance and cost per function.

1.
L.
Ho
, in
2017 Third Quarter Earnings Conference
(Taiwan Semiconductor Manufacturing Company (TSMC),
2017
).
2.
R. H.
Dennard
 et al, “
Design of ion-implanted MOSFET's with very small physical dimensions
,”
IEEE J. Solid-State Circuits
9
(
5
),
256
268
(
1974
).
3.
T.
Yuan
,
C. H.
Wann
, and
D. J.
Frank
, “
25 nm CMOS design considerations
,” in
Technical Digest - International Electron Devices Meeting, 1998, IEDM'98
(IEEE,
1998
).
4.
T.
Ghani
 et al, “
Scaling challenges and device design requirements for high performance sub-50 nm gate length planar CMOS transistors
,” in
Digest of Technical Papers - 2000 Symposium on VLSI Technology, 2000
(IEEE,
2000
).
5.
P. M.
Fahey
,
P. B.
Griffin
, and
J. D.
Plummer
, “
Point defects and dopant diffusion in silicon
,”
Rev. Mod. Phys.
61
(
2
),
289
(
1989
).
6.
B.
Hartmut
, “
Diffusion mechanisms and intrinsic point-defect properties in silicon
,”
MRS Bull.
25
(
6
),
22
27
(
2000
).
7.
S. C.
Jain
 et al, “
Transient enhanced diffusion of boron in Si
,”
J. Appl. Phys.
91
(
11
),
8919
8941
(
2002
).
8.
S.
Mirabella
 et al, “
Mechanisms of boron diffusion in silicon and germanium
,”
J. Appl. Phys.
113
,
031101
(
2013
).
9.
S. M.
Hu
,
P.
Fahey
, and
R. W.
Dutton
, “
On models of phosphorus diffusion in silicon
,”
J. Appl. Phys.
54
(
12
),
6912
6922
(
1983
).
10.
F. F.
Morehead
and
R. F.
Lever
, “
Enhanced “tail” diffusion of phosphorus and boron in silicon: Self‐interstitial phenomena
,”
Appl. Phys. Lett.
48
(
2
),
151
153
(
1986
).
11.
S.
Solmi
 et al, “
Transient enhanced diffusion of arsenic in silicon
,”
J. Appl. Phys.
94
(
8
),
4950
4955
(
2003
).
12.
N.
Xu
 et al, “
Extension of planar bulk n-channel MOSFET scaling with oxygen insertion technology
,”
IEEE Trans. Electron Devices
61
(
9
),
3345
3349
(
2014
).
13.
R. J.
Mears
 et al, “
Punch-through stop doping profile control via interstitial trapping by oxygen-insertion silicon channel
,” in
Electron Devices Technology and Manufacturing Conference (EDTM)
(
IEEE
,
2017
), pp.
65
66
.
14.
H. S.
Chao
 et al, “
Species and dose dependence of ion implantation damage induced transient enhanced diffusion
,”
J. Appl. Phys.
79
(
5
),
2352
2363
(
1996
).
15.
D.
Boyd
 et al, “
Ultra-thin body super-steep retrograde well (SSRW) FET devices
,” U.S. patent No. 20060022270A1 (30 July
2004
).
16.
S.
Ruffell
,
I. V.
Mitchell
, and
P. J.
Simpson
, “
Annealing behavior of low-energy ion-implanted phosphorus in silicon
,”
J. Appl. Phys.
97
(
12
),
123518
(
2005
).
17.
R.
Duffy
 et al, “
Boron uphill diffusion during ultrashallow junction formation
,”
Appl. Phys. Lett.
82
(
21
),
3647
3649
(
2003
).
18.
H. C.-H.
Wang
 et al, “
Interface induced uphill diffusion of boron: An effective approach for ultrashallow junction
,”
IEEE Electron Device Lett.
22
(
2
),
65
67
(
2001
).
19.
M.
Ferri
 et al, “
Arsenic uphill diffusion during shallow junction formation
,”
J. Appl. Phys.
99
(
11
),
113508
(
2006
).;
D.-W.
Lin
 et al, “
A constant-mobility method to enable MOSFET series-resistance extraction
,”
IEEE Electron Device Lett.
28
(
12
),
1132
1134
(
2007
).
20.
D. A.
Antoniadis
 et al, “
Boron in near-intrinsic ⟨100⟩ and ⟨111⟩ silicon under inert and oxidizing ambients—diffusion and segregation
,”
J. Electrochem. Soc.
125
(
5
),
813
819
(
1978
).
21.
Sentaurus Device User Guide, Version N, Synopsys Inc., Mountain View, CA, USA,
2017
.
22.
D.
Nobili
 et al, “
Precipitation as the phenomenon responsible for the electrically inactive phosphorus in silicon
,”
J. Appl. Phys.
53
(
3
),
1484
1491
(
1982
).
23.
S.
Solmi
 et al, “
High‐concentration boron diffusion in silicon: Simulation of the precipitation phenomena
,”
J. Appl. Phys.
68
(
7
),
3250
3258
(
1990
).
24.
R.
Turan
 et al, “
Mapping electrically active dopant profiles by field‐emission scanning electron microscopy
,”
Appl. Phys. Lett.
69
(
11
),
1593
1595
(
1996
).
25.
D.
Nobili
 et al, “
Precipitation as the phenomenon responsible for the electrically inactive arsenic in silicon
,”
J. Electrochem. Soc.
130
(
4
),
922
928
(
1983
).
You do not currently have access to this content.