The effect of pressure on β relaxation in La60Ni15Al25 metallic glass (MG) was investigated by activation-relaxation technique in combination with molecular dynamics simulation. It is found that the β relaxation behavior and the potential energy landscape are significantly modulated by pressure. With increasing pressure, the atomic motion in β relaxation in La60Ni15Al25 MG changes from hopping-dominated to the string-like-dominated motion with increased activation energy. Moreover, while the hopping motion is gradually suppressed as pressure is increased, the cooperative rearrangements with more atoms involved but very low activation energies are significantly enhanced by pressure. It is further found that the “subbasins” in the potential energy landscape in La60Ni15Al25 MG become deeper and steeper with increasing pressure, leading to the increase of activation energy. Meanwhile, some neighboring “subbasins” merge under pressure accompanied by the disappearance of energy barriers in-between, leading to events with very low activation energies in the β relaxation. The atomic structure analysis reveals that the transformation of atomic motions in β relaxation in La60Ni15Al25 MG under pressure is strongly correlated with the decrease of pentagon-rich atomic clusters and the increase of clusters with fewer pentagons. These findings provide a new understanding of the β relaxation mechanism and some clues for tuning β relaxation in MGs.

1.
H. S.
Chen
,
Rep. Prog. Phys.
43
,
353
(
1980
).
3.
C. A.
Angell
,
Curr. Opin. Solid State Mater. Sci.
1
,
578
(
1996
).
4.
J. C.
Dyre
,
Rev. Mod. Phys.
78
,
953
(
2006
).
5.
P.
Lunkenheimer
,
U.
Schneider
,
R.
Brand
, and
A.
Loid
,
Contemp. Phys.
41
,
15
(
2000
).
6.
C. A.
Angell
,
K. L.
Ngai
,
G. B.
McKenna
,
P. F.
McMillan
, and
S. W.
Martin
,
J. Appl. Phys.
88
,
3113
(
2000
).
7.
M. D.
Ediger
and
P.
Harrowell
,
J. Chem. Phys.
137
,
080901
(
2012
).
8.
S.
Capaccioli
,
M.
Paluch
,
D.
Prevosto
,
L. M.
Wang
, and
K. L.
Ngai
,
J. Phys. Chem. Lett.
3
,
735
(
2012
).
9.
10.
K. L.
Ngai
,
Relaxation and Diffusion in Complex Systems
(
Springer
,
New York
,
2011
).
11.
H. B.
Yu
,
W. H.
Wang
, and
K.
Samwer
,
Mater. Today
16
,
183
(
2013
).
12.
H. B.
Yu
,
W. H.
Wang
,
H. Y.
Bai
, and
K.
Samwer
,
Natl. Sci. Rev.
1
,
429
(
2014
).
13.
M.
Goldstein
,
J. Non-Cryst. Solids
357
,
249
(
2011
).
14.
W. H.
Wang
,
Prog. Mater. Sci.
57
,
487
(
2012
).
15.
H. J.
Jin
,
X. J.
Gu
,
P.
Wen
,
L. B.
Wang
, and
K.
Lu
,
Acta Mater.
51
,
6219
(
2003
).
16.
W.
Fenghua
,
L.
Jianguo
,
Z.
Jiayou
,
L.
Lian
, and
R.
Guozhong
,
Rare Met. Mater. Eng.
38
,
958
(
2009
).
17.
T. P.
Ge
,
C.
Wang
,
J.
Tan
,
T.
Ma
,
X. H.
Yu
,
C. Q.
Jin
,
W. H.
Wang
, and
H. Y.
Bai
,
J. Appl. Phys.
121
,
205109
(
2017
).
18.
N.
Miyazaki
,
Y. C.
Lo
,
M.
Wakeda
, and
S.
Ogata
,
Appl. Phys. Lett.
109
,
091906
(
2016
).
19.
W.
Zhao
,
T.
Xu
,
S. D.
Feng
,
Y. Y.
Wang
,
L.
Qi
,
G.
Li
, and
R. P.
Liu
,
Mater. Sci. Eng., A
596
,
59
(
2014
).
20.
H. W.
Sheng
,
H. Z.
Liu
,
Y. Q.
Cheng
,
J.
Wen
,
P. L.
Lee
,
W. K.
Luo
,
S. D.
Shastri
, and
E.
Ma
,
Nat. Mater.
6
,
192
(
2007
).
21.
Y.
Fang
and
J.
Jiang
,
J. Non-Cryst. Solids
358
,
3212
(
2012
).
22.
W. H.
Wang
,
D. W.
He
,
D. Q.
Zhao
,
Y. S.
Yao
, and
M.
He
,
Appl. Phys. Lett.
75
,
2770
(
1999
).
23.
F.
Ye
and
K.
Lu
,
Acta Mater.
47
,
2449
(
1999
).
24.
R.
Casalini
and
C. M.
Roland
,
Phys. Rev. Lett.
91
,
015702
(
2003
).
25.
C. M.
Roland
,
S.
Hensel-Bielowka
,
M.
Paluch
, and
R.
Casalini
,
Rep. Prog. Phys.
68
,
1405
(
2005
).
26.
A. A.
Pronin
,
M. V.
Kondrin
,
A. G.
Lyapin
,
V. V.
Brazhkin
,
A. A.
Volkov
,
P.
Lunkenheimer
, and
A.
Loidl
,
Phys. Rev. E
81
,
041503
(
2010
).
27.
Z.
Wang
,
H. B.
Yu
,
P.
Wen
,
H. Y.
Bai
, and
W. H.
Wang
,
J. Phys.: Condens. Matter
23
,
142202
(
2011
).
28.
J. C.
Qiao
and
J. M.
Pelletier
,
J. Appl. Phys.
112
,
083528
(
2012
).
29.
Z. G.
Zhu
,
Y. Z.
Li
,
Z.
Wang
,
X. Q.
Gao
,
P.
Wen
,
H. Y.
Bai
,
K. L.
Ngai
, and
W. H.
Wang
,
J. Chem. Phys.
141
,
084506
(
2014
).
30.
Z.
Lu
,
B. S.
Shang
,
Y. T.
Sun
,
Z. G.
Zhu
,
P. F.
Guan
,
W. H.
Wang
, and
H. Y.
Bai
,
J. Chem. Phys.
144
,
144501
(
2016
).
31.
G. T.
Barkema
and
N.
Mousseau
,
Phys. Rev. Lett.
77
,
4358
(
1996
).
32.
N.
Mousseau
and
G. T.
Barkema
,
Phys. Rev. E
57
,
2419
(
1998
).
33.
E.
Cancès
,
F.
Legoll
,
M. C.
Marinica
,
K.
Minoukadeh
, and
F.
Willaime
,
J. Chem. Phys.
130
,
114711
(
2009
).
35.
S.
Plimpton
,
J. Comput. Phys.
117
,
1
(
1995
).
36.
H. W.
Sheng
,
Y. Q.
Cheng
,
P. L.
Lee
,
S. D.
Shastri
, and
E.
Ma
,
Acta Mater.
56
,
6264
(
2008
).
37.
Y.
Fan
,
T.
Iwashita
, and
T.
Egami
,
Nat. Commun.
5
,
5083
(
2014
).
38.
T. F.
Middleton
and
D. J.
Wales
,
Phys. Rev. B
64
,
024205
(
2001
).
39.
H. W.
Sheng
,
E.
Ma
, and
M. J.
Kramer
,
JOM
64
,
856
(
2012
).
40.
F. H.
Stillinger
and
T. A.
Weber
,
Phys. Rev. A
28
,
2408
(
1983
).
42.
P. G.
Debenedetti
and
F. H.
Stillinger
,
Nature
410
,
259
(
2001
).
44.
W. L.
Johnson
and
K.
Samwer
,
Phys. Rev. Lett.
95
,
195501
(
2005
).
45.
C. E.
Maloney
and
D. J.
Lacks
,
Phys. Rev. E
73
,
061106
(
2006
).
46.
T.
Çain
and
J. R.
Ray
,
Phys. Rev. B
38
,
7940
(
1988
).
47.
V. A.
Borodin
,
Philos. Mag. A
79
,
1887
(
1999
).
48.
Y. C.
Hu
,
F. X.
Li
,
M. Z.
Li
,
H. Y.
Bai
, and
W. H.
Wang
,
Nat. Commun.
6
,
8310
(
2015
).
49.
H. L.
Peng
,
M. Z.
Li
, and
W. H.
Wang
,
Phys. Rev. Lett.
106
,
135503
(
2011
).
50.
M. Z.
Li
,
J. Mater. Sci. Technol.
30
,
551
(
2014
).
51.
M. Z.
Li
,
H. L.
Peng
,
Y. C.
Hu
,
F. X.
Li
,
H. P.
Zhang
, and
W. H.
Wang
,
Chin. Phys. B
26
,
016104
(
2017
).
52.
Y. J.
Lu
,
Q. L.
Bi
,
H. S.
Huang
, and
H. H.
Pang
,
Phys. Rev. B
96
,
064301
(
2017
).
53.
F. X.
Li
and
M. Z.
Li
,
J. Appl. Phys.
122
,
225103
(
2017
).
54.
B.
Wang
,
B. S.
Shang
,
X. Q.
Gao
,
W. H.
Wang
,
H. Y.
Bai
,
M. X.
Pan
, and
P. F.
Guan
,
J. Phys. Chem. Lett.
7
,
4945
(
2016
).
55.
J.
Ding
,
M.
Asta
, and
R. O.
Ritchie
,
Phys. Rev. B
93
,
140204
(
2016
).
You do not currently have access to this content.