Here, we report the effect of A-site substitution of Tb at the expense of Bi on the ferroelectric and magnetic properties in m = 5 layered 2-D Aurivillius Bi6Ti3Fe2O18 thin films. The nominal stoichiometry of the prepared compound is Tb0.40Bi5.6Fe2Ti3O18, Tb0.90Bi5.1Fe2Ti3O18, and Bi6Ti3Fe2O18. Phase examination reveals that only 0.40 mol. % is successfully substituted forming Tb0.40Bi5.6Fe2Ti3O18 thin films. Lateral and vertical piezoresponse switching loops up to 200 °C reveal responses for Bi6Ti3Fe2O18, Tb substituted Tb0.40Bi5.6Fe2Ti3O18, and Tb0.90Bi5.1Fe2Ti3O18 thin films along the in-plane (±42.31 pm/V, 88 pm/V and ±134 pm/V, respectively) compared with the out-of-plane (±6.15 pm/V, 19.83 pm/V and ±37.52 pm/V, respectively). The macroscopic in-plane polarization loops reveal in-plane saturation (Ps) and remanence polarization (Pr) for Bi6Ti3Fe2O18 of ±26.16 μC/cm2 and ±22 μC/cm2, whereas, ±32.75 μC/cm2 and ±22.11 μC/cm2, ±40.30 μC/cm2 and ±28.5 μC/cm2 for Tb0.40Bi5.6Fe2Ti3O18 and Tb0.90Bi5.1Fe2Ti3O18 thin films, respectively. No ferromagnetic signatures were observed for Bi6Ti3Fe2O18 and Tb0.40Bi5.6Fe2Ti3O18. However, a weak response was observed for the Tb0.90Bi5.1Fe2Ti3O18 at 2K. Microstructural analysis of Tb0.90Bi5.1Fe2Ti3O18 revealed that it contains 4 vol. % Fe:Tb rich areas forming FexTbyOz, which accounts for the observed magnetic moment. This study demonstrates the importance of thorough microstructural analysis when determining whether magnetic signatures can be reliably assigned to the single-phase system. We conclude that Tb0.40Bi5.6Fe2Ti3O18 and Tb0.90Bi5.1Fe2Ti3O18 samples are not multiferroic but demonstrate the potential for Fe-RAM applications.

1.
P.
Borisov
and
W.
Kleemann
, “
Exchange bias and ferromagnetic coercivity in heterostructures with antiferromagnetic Cr2O3
,”
J. Appl. Phys.
110
(
3
),
033917
(
2011
).
2.
J. M.
Hu
,
Z.
Li
,
J.
Wang
, and
C. W.
Nana
, “
Electric-field control of strain mediated magnetoelectric random access memory
,”
J. Appl. Phys.
107
,
093912
(
2010
).
3.
N.
Tiercelin
,
V.
Preobrazhensky
,
P.
Pernod
, and
A.
Ostaschenko
, “
Enhanced magnetoelectric effect in nanostructured magnetostrictive thin film resonant actuator with field induced spin reorientation transition
,”
Appl. Phys. Lett.
92
(
6
),
062904
(
2008
).
4.
L. E.
Fuentes-Cobas
,
J. A.
Matutes-Aquino
,
M. E.
Botello-Zubiate
,
A.
González Vázquez
,
M. E.
Fuentes-Montero
, and
D.
Chateigner
,
Handbook of Magnetic Materials
(
Elsevier
,
2015
), Vol.
24
, pp.
237
322
.
5.
N.
Deepak
,
P. F.
Zhang
,
L.
Keeney
,
M. E.
Pemble
, and
R. W.
Whatmore
, “
Atomic vapor deposition of bismuth titanate thin films
,”
J. Appl. Phys.
113
,
187207
(
2013
).
6.
B.
Aurivillius
, “
Mixed bismuth oxides with layer lattices: I. Structure type of CaBi2B2O9
,”
Ark. Kemi
1
,
463
480
(
1949
).
7.
B.
Aurivillius
, “
Mixed bismuth oxides with layer lattices II. Structure of Bi4Ti3O12
,”
Ark. Kemi
1
,
499
512
(
1949
).
8.
B.
Aurivillius
, “
Mixed oxides with layer lattices. III. Structure of BaBi4Ti4O15
,”
Ark. Kemi
2
,
519
527
(
1950
).
9.
A.
Faraz
,
N.
Deepak
,
M.
Schmidt
,
M. E.
Pemble
, and
L.
Keeney
, “
A study of the temperature dependence of the local ferroelectric properties of c-axis oriented Bi6Ti3Fe2O18 Aurivillius phase thin films: Illustrating the potential of a novel lead-free perovskite material for high density memory applications
,”
AIP Adv.
5
,
087123
(
2015
).
10.
N. A.
Hill
, “
First principles search for multiferroism in BiCrO3
,”
J. Phys. Chem. B
104
(
29
),
6694
6709
(
2000
).
11.
Y. H.
Chu
,
L. W.
Martin
,
M. B.
Holcomb
,
M.
Gajek
,
S. J.
Han
,
Q.
He
,
N.
Balke
,
C. H.
Yang
,
D.
Lee
,
W.
Hu
,
Q.
Zhan
,
P. L.
Yang
,
A. F.
Rodriguez
,
A.
Scholl
,
S. X.
Wang
, and
R.
Ramesh
, “
Electric-field control of local ferromagnetism using a magnetoelectric multiferroic
,”
Nat. Mater.
7
(
6
),
478
482
(
2008
).
12.
T.
Atou
,
H.
Chiba
,
K.
Ohoyama
,
Y.
Yamaguchi
, and
Y.
Syono
, “
Structure determination of ferromagnetic perovskite BiMnO3
,”
J. Solid State Chem.
145
,
639
642
(
1999
).
13.
A. M.
Mulders
, “
Multiferroics: Magnetic moments under stress
,”
Nat. Phys.
9
(
7
),
398
399
(
2013
).
14.
L.
Keeney
,
T.
Maity
,
M.
Schmidt
,
A.
Amann
,
N.
Deepak
,
N.
Petkov
,
S.
Roy
,
M. E.
Pemble
, and
R. W.
Whatmore
, “
Magnetic field‐induced ferroelectric switching in multiferroic Aurivillius phase thin films at room temperature
,”
J. Am. Ceram. Soc.
96
(
8
),
2339
2357
(
2013
).
15.
A.
Faraz
,
T.
Maity
,
M.
Schmidt
,
N.
Deepak
,
S.
Roy
,
M. E.
Pemble
,
R.
Whatmore
, and
L.
Keeney
, “
Direct visualization of magnetic‐field‐induced magnetoelectric switching in multiferroic Aurivillius phase thin films
,”
J. Am. Ceram. Soc.
100
,
975
987
(
2017
).
16.
M.
Bibes
and
A.
Barthélémy
, “
Multiferroics: Towards a magnetoelectric memory
,”
Nat. Mater.
7
,
425
426
(
2008
).
17.
L.
Keeney
,
S.
Kulkarni
,
N.
Deepak
,
M.
Schmidt
,
N.
Petkov
,
P. F.
Zhang
, and
S.
Cavill
, “
Room temperature ferroelectric and magnetic investigations and detailed phase analysis of Aurivillius phase Bi5Ti3Fe0.7Co0.3O15 thin films
,”
J. Appl. Phys.
112
(
5
),
052010
(
2012
).
18.
P. F.
Zhang
,
N.
Deepak
,
L.
Keeney
,
M. E.
Pemble
, and
R. W.
Whatmore
, “
The structural and piezoresponse properties of c-axis-oriented Aurivillius phase Bi5Ti3FeO15 thin films deposited by atomic vapor deposition
,”
Appl. Phys. Lett.
101
(
11
),
112903
(
2012
).
19.
R. E.
Jones
,
P.
Zurcher
,
P.
Chu
,
D. J.
Taylor
,
Y. T.
Lii
,
B.
Jiang
,
P. D.
Maniar
, and
S. J.
Gillespie
, “
Memory applications based on ferroelectric and high-permittivity dielectric thin films
,”
Microelectron. Eng.
29
(
1–4
),
3
10
(
1995
).
20.
R. E.
Newnham
,
R. W.
Wolfe
, and
J. F.
Dorrian
, “
Structural basis of ferroelectricity in the bismuth titanate family
,”
Mater. Res. Bull.
6
,
1029
1039
(
1971
).
21.
M. A.
Zurbuchen
,
J.
Lettieri
,
S. J.
Fulk
,
Y.
Jia
,
A. H.
Carim
,
D. G.
Schlom
, and
S. K.
Streiffer
, “
Bismuth volatility effects on the perfection of SrBi2Nb2O9 and SrBi2Ta2O9 films
,”
Appl. Phys. Lett.
82
,
4711
4713
(
2003
).
22.
X. Z.
Zuo
,
M. L.
Zhang
,
E. J.
He
,
J.
Yang
,
X. B.
Zhu
, and
J. M.
Dai
, “
Multiferroic property, dielectric response and scaling behaviour in Aurivillius Bi4.25Gd0.75Fe0.5Co0.5Ti3O15 ceramic
,”
J. Alloys Compd.
695
,
2556
2562
(
2017
).
23.
X. Y.
Mao
,
W.
Wang
, and
X. B.
Chen
, “
Electrical and magnetic properties of Bi5FeTi3O15 compound prepared by inserting BiFeO3 into Bi4Ti3O12
,”
Solid State Commun.
147
,
186
189
(
2008
).
24.
F. J.
Yang
,
P.
Su
,
C.
Wei
,
X. Q.
Chen
,
C. P.
Yang
, and
W. Q.
Cao
, “
Large magnetic response in (Bi4Nd)Ti3(Fe0.5Co0.5)O15 ceramic at room-temperature
,”
J. Appl. Phys.
110
,
126102
(
2011
).
25.
A.
Srinivas
,
M. M.
Kumar
,
S. V.
Suryanarayana
, and
T.
Bhimasankaram
, “
Magnetoelectric measurements on Bi5Ti3FeO15 and Bi6Ti3Fe2O18
,”
Mater. Res. Bull.
34
(
6
),
989
996
(
1999
).
26.
V.
Koval
,
I.
Skorvanek
,
M.
Reece
,
L.
Mitoseriu
, and
H.
Yan
, “
Effect of dysprosium substitution on crystal structure and physical properties of multiferroic BiFeO3 ceramics
,”
J. Eur. Ceram. Soc.
34
,
641
(
2014
).
27.
F.
Xue
,
Q.
Fu
,
D.
Zhou
,
L.
Zhou
,
Y.
Hu
,
Z.
Zheng
,
G.
Jian
, and
L.
Hao
, “
Structural evolution and physical properties of multiferroic Bi0.9−x La0.1PbxFeO3−x/2 ceramics
,”
J. Phys. D: Appl. Phys.
48
,
305004
(
2015
).
28.
A. Z.
Simões
,
M. A.
Ramírez
,
C. S.
Riccardi
,
E.
Longo
, and
J. A.
Varela
, “
Ferroelectric properties and leakage current characteristics of Bi3.25La0.75Ti3O12 thin films prepared by the polymeric precursor method
,”
J. Appl. Phys.
98
,
114103
(
2005
).
29.
P.
Fang
,
H.
Fan
,
J.
Li
, and
F.
Liang
, “
Lanthanum induced larger polarization and dielectric relaxation in Aurivillius phase SrBi2−xLaxNb2O9 ferroelectric ceramics
,”
J. Appl. Phys.
107
,
064104
(
2010
).
30.
C. M.
Raghavan
,
J. W.
Kim
,
J. Y.
Choi
, and
S. S.
Kim
, “
Effects of excessive Bi on structure and properties of Aurivillius Bi5.25La0.75Fe2Ti3O18 thin films
,”
New Phys. Sae Mulli.
65
(
4
),
311
316
(
2015
).
31.
C. L.
Diao
,
H. W.
Zheng
,
Y. G.
Zhang
,
Z.
Chen
, and
L.
Fang
, “
Structure, photoluminescence and electrical properties of BaBi3.5Eu0.5Ti4O15 ceramics
,”
Ceram. Int.
40
,
13827
13832
(
2014
).
32.
A. A.
Alemi
,
R.
Kashfi
, and
B.
Shabani
, “
Preparation and characterization of novel Ln (Gd3+, Ho3+ and Yb3+)-doped Bi2MoO6 with Aurivillius layered structures and photocatalytic activities under visible light irradiation
,”
J. Mol. Catal. A: Chem.
392
,
290
298
(
2014
).
33.
V. A.
Khomchenko
,
G. N.
Kakazei
,
Y. G.
Pogorelov
,
J.
Araujo
,
M. V.
Bushinsky
,
D. A.
Kiselev
,
A. L.
Kholkin
, and
J. A.
Paixa
, “
Effect of Gd substitution on ferroelectric and magnetic properties of Bi4Ti3O12
,”
Mater. Lett.
64
,
1066
1068
(
2010
).
34.
T.
Sarkar
,
S. A.
Ivanov
,
E. A.
Fortalnova
,
E. D.
Politova
,
M. G.
Safronenko
,
P.
Nordblad
, and
R.
Mathieu
, “
The role of Tb-doping on the structural and functional properties of Bi4−xTbxTi3O12 ferroelectric phases with the Aurivillius type structure
,”
Mater. Sci. Mater. Electron.
28
,
4914
4924
(
2017
).
35.
H.
Singh
and
K. L.
Yadav
, “
Dielectric, magnetic and magnetoelectric properties of La and Nb co doped bismuth ferrite
,”
J. Phys.: Condens. Matter
23
,
385901
(
2011
).
36.
P.
Ferrer
,
J. E.
Iglesias
, and
A.
Castro
, “
Synthesis of the Aurivillius Phase SrBi4Ti4O15 by a Mechanochemical Activation Route
,”
Chem. Mater.
16
(7),
1323
1329
(
2004
).
37.
R.
Furushima
,
S.
Tanaka
,
Z.
Kato
, and
K.
Uematsu
, “
Orientation distribution–Lotgering factor relationship in a polycrystalline material—as an example of bismuth titanate prepared by a magnetic field
,”
J. Ceram. Soc. Jpn.
118
(
10
),
921
926
(
2010
).
38.
T.
Siegrist
, “
Crystallographica - a software toolkit for crystallography
,”
J. Appl. Crystallogr.
30
,
418
419
(
1997
).
39.
T.
Maity
,
S.
Goswami
,
D.
Bhattacharya
, and
S.
Roy
, “
Superspin glass mediated giant spontaneous exchange bias in a nanocomposite of BiFeO3-Bi2Fe4O9
,”
Phys. Rev. Lett.
110
(
10
),
107201
(
2013
).
40.
M.
Schmidt
,
A.
Amann
,
L.
Keeney
,
M. E.
Pemble
,
J. D.
Holmes
,
N.
Petkov
, and
R. W.
Whatmore
, “
Absence of evidence ≠ evidence of absence: Statistical analysis of inclusions in multiferroic thin films
,”
Sci. Rep.
4
,
1
8
(
2014
).
41.
A.
Lubk
,
S.
Gemming
, and
N. A.
Spaldin
, “
First-principles study of ferroelectric domain walls in multiferroic bismuth ferrite
,”
Phys. Rev. B
80
,
104110
104118
(
2009
).
42.
S.
Sankarrajan
,
K.
Sakthipandia
, and
V.
Rajendrana
, “
On-line phase transition in La1−xSrxMnO3 (0.28 ≤ x ≤ 0.36) perovskites through ultrasonic studies
,”
Mater. Res.
15
(
4
),
517
521
(
2012
).
43.
C. R.
Foschini
,
M. A.
Ramirez
,
S. R.
Simões
,
J. A.
Varela
,
E.
Longo
, and
A. Z.
Simões
, “
Piezoresponse force microscopy characterization of rare-earth doped BiFeO3 thin films grown by the soft chemical method
,”
Ceram. Int.
39
(
3
),
2185
2195
(
2013
).
44.
B. J.
Rodriguez
,
C.
Callahan
,
S. V.
Kalinin
, and
R.
Proksch
, “
Dual-frequency resonance-tracking atomic force microscopy
,”
Nanotechnology
18
(
47
),
475504
475506
(
2007
).
45.
S. V.
Kalinin
,
Z. G.
Ye
, and
A. L.
Kholkin
, “
Piezoresponse force microscopy and nanoscale phenomena in polar materials
,”
J. Appl. Phys.
112
(
5
),
051901
(
2012
).
46.
G.
Rijnders
and
D. H. A.
Blank
, “
Materials science: Build your own superlattice
,”
Nature
433
,
369
370
(
2005
).
47.
D.
Lee
,
S. M.
Yang
,
T. H.
Kim
,
B. C.
Jeon
,
Y. S.
Kim
,
J. G.
Yoon
,
H. N.
Lee
,
S. H.
Baek
,
C. B.
Eom
, and
T. W.
Noh
, “
Multilevel data storage memory using deterministic polarization control
,”
Adv. Mater.
24
,
402
406
(
2012
).
48.
C. M.
Wang
,
J. F.
Wang
,
S.
Zhang
, and
T. R.
Shrout
, “
Electromechanical properties of A-site (LiCe)-modified sodium bismuth titanate) (Na0.5Bi4.5Ti4O15) piezoelectric ceramics at elevated temperature
,”
J. Appl. Phys.
105
(
9
),
094110
(
2009
).
49.
N.
Nukaga
,
K.
Ishikawa
, and
H.
Funakubo
, “
Growth of epitaxial SrBi2Ta2O9 thin films by metalorganic chemical vapor deposition
,”
Jpn. J. Appl. Phys., Part 1
38
,
5428
(
1999
).
50.
A. Z.
Simões
,
M. A.
Ramirez
,
C. S.
Riccardi
,
E.
Longo
, and
J. A.
Varela
, “
Ferroelectric characteristics of SrBi4Ti4O15 thin films grown on Pt/Ti/SiO2/Si substrates by the soft chemical method
,”
Mater. Lett.
60
,
2020
2023
(
2006
).
51.
Y.
Shimakawa
,
Y.
Kubo
,
Y.
Tauchi
,
T.
Kamiyam
,
H.
Asano
, and
F.
Izumi
, “
Doping effect on the dielectric property in bismuth titanate
,”
Appl. Phys. Lett.
77
(
1
),
2749
(
2000
).
52.
T. C.
Chen
,
T.
Li
,
X.
Zhang
, and
S. B.
Desu
, “
Doping effect on the dielectric property in bismuth titanate
,”
J. Mater. Res.
12
(
6
),
1569
1575
(
1997
).
53.
T.
Jia
,
H.
Kimura
,
Z.
Cheng
, and
H.
Zhao
, “
Ferroelectric and magnetic properties of Aurivillius Bim+1Ti3Fem-3O3m+3 thin films
,”
J. Vac. Sci. Technol. A
33
(
6
),
060605
(
2015
).
54.
Y.
Yan
,
M. M.
Al-Jassim
,
Z.
Xu
,
X.
Lu
,
D.
Viehland
,
M.
Payne
, and
S. J.
Pennycook
, “
Structure determination of a planar defect in SrBi2Ta2O9
,”
Appl. Phys. Lett.
75
(
13
),
1961
1963
(
1999
).
55.
M. D.
Maeder
,
D.
Damjanovic
, and
N.
Setter
, “
Lead free piezoelectric materials
,”
J. Electroceram.
13
(
1
),
385
392
(
2004
).
56.
A.
Chanthbouala
,
A.
Crassous
,
V.
Garcia
,
K.
Bouzehouane
,
S.
Fusil
,
X.
Moya
,
J.
Allibe
,
B.
Dlubak
,
J.
Grollier
,
S.
Xavier
,
C.
Deranlot
,
A.
Moshar
,
R.
Proksch
,
N. L. D.
Mathur
,
M.
Bibes
, and
A.
Barthélémy
, “
Solid-state memories based on ferroelectric tunnel junctions
,”
Nat. Nanotechnol.
7
,
101
104
(
2012
).
57.
D. S.
Sohn
,
W. X.
Xianyu
,
W. I.
Lee
,
I.
Lee
, and
I.
Chung
, “
Ferroelectric SrBi4Ti4O15 thin films with high polarization grown on an IrO2 layer
,”
Appl. Phys. Lett.
79
,
3672
(
2001
).
58.
M.
Wuttig
and
N.
Yamada
, “
Phase-change materials for rewriteable data storage
,”
Nat. Mater.
6
,
824
832
(
2007
).
59.
A. V.
Kolobov
,
P.
Fons
,
A. I.
Frenkel
,
A. L.
Ankudinov
,
J.
Tominaga
, and
T.
Uruga
, “
Understanding the phase-change mechanism of rewritable optical media
,”
Nat. Mater.
3
,
703
708
(
2004
).
60.
A.
Onodera
,
K.
Yoshio
,
C. C.
Myint
,
S.
Kojima
,
H.
Yamashita
, and
T.
Takama
, “
Ferroelectric instability and dimensionality in Bi-layered perovskites and thin films
,”
Jpn. J. Appl. Phys., Part 1
38
(
9B
),
5683
5685
(
1999
).
61.
Q. Q.
Zhang
,
S. J.
Gross
,
S.
Tadigadapa
,
T. N.
Jackson
,
F. T.
Djuth
, and
S.
TrolierMcKinstry
, “
Lead zirconate titanate films for d33 mode cantilever actuators
,”
Sens. Actuators, A.
105
,
91
97
(
2003
).
62.
N.
Hu
,
C.
Lu
,
Z.
Xia
,
R.
Xiong
,
P.
Fang
,
J.
Shi
, and
J.
Liu
, “
Multiferroicity and magnetoelectric coupling in TbMnO3 thin films
,”
ACS. Appl. Mater. Interfaces
7
(
48
),
26603
26607
(
2015
).
63.
S.
Amiri
and
H.
Shokrollahi
, “
Magnetic and structural properties of RE doped Co-ferrite (REåNd, Eu, and Gd) nano-particles synthesized by co-precipitation
,”
J. Magn. Magn. Mater.
345
,
18
23
(
2013
).
64.
D.
Caruntu
,
G.
Caruntu
, and
C. J.
O'Conno
, “
Magnetic properties of variable-sized Fe3O4 nanoparticles synthesized from non-aqueous homogeneous solutions of polyols
,”
J. Phys. D: Appl. Phys.
40
,
5801
5809
(
2007
).
65.
M. A.
Khan
,
M. J.
Rehman
,
K.
Mahmood
,
I.
Alic
,
M. N.
Akhtar
,
G.
Murtazae
,
I.
Shakir
, and
M. F.
Warsi
, “
Impacts of Tb substitution at cobalt site on structural, morphological and magnetic properties of cobalt ferrites synthesized via double sintering method
,”
Ceram. Int.
41
(
2
),
2286
2293
(
2015
).
66.
Y.
Shimakawa
,
M.
Azuma
, and
N.
Ichikawa
, “
Multiferroic compounds with double-perovskite structures
,”
Materials
4
,
153
168
(
2011
).
67.
K.
Amanuma
,
T.
Hase
, and
Y.
Miyasaka
, “
Preparation and ferroelectric properties of SrBi2Ta2O9 thin films
,”
Appl. Phys. Lett.
66
,
221
(
1995
).
68.
R.
Guo
,
L.
You
,
Y.
Zhou
,
Z. S.
Lim
,
X.
Zou
,
L.
Chen
,
R.
Ramesh
, and
J.
Wang
, “
Non-volatile memory based on the ferroelectric photovoltaic effect
,”
Nat. Commun.
4
,
1
5
(
2013
).
69.
A. Z.
Simoes
,
A. H. M.
Gonzalez
,
C. S.
Riccardi
,
E. C.
Souza
,
F.
Moura
,
M. A.
Zaghete
,
E.
Longo
, and
J. A.
Varela
, “
Ferroelectric and dielectric properties of lanthanum-modified bismuth titanate thin films obtained by the polymeric precursor method
,”
J. Electroceram.
13
,
65
70
(
2004
).
You do not currently have access to this content.