This work investigates the reaction dynamics of metastable intermolecular composites through high speed spectrometry, pressure measurements, and high-speed color camera pyrometry. Eight mixtures including Al/CuO and Al/Fe2O3/xWO3 (x being the oxidizer mol. %) were reacted in a constant volume pressure cell as a means of tuning gas release and adiabatic temperature. A direct correlation between gas release, peak pressure, and pressurization rate was observed, but it did not correlate with temperature. When WO3 was varied as part of the stoichiometric oxidizer content, it was found that Al/Fe2O3/70% WO3 achieved the highest pressures and shortest burn time despite a fairly constant temperature between mixtures, suggesting an interplay between the endothermic Fe2O3 decomposition and the higher adiabatic flame temperature sustained by the Al/WO3 reaction in the composite. It is proposed that the lower ignition temperature of Al/WO3 leads to the initiation of the composite and its higher flame temperature enhances the gasification of Fe2O3, thus improving advection and propagation as part of a feedback loop that drives the reaction. Direct evidence of such gas release promoting reactivity was obtained through high speed pyrometry videos of the reaction. These results set the stage for nanoenergetic materials that can be tuned for specific applications through carefully chosen oxidizer mixtures.

1.
D. D.
Dlott
,
Mater. Sci. Technol.
22
,
463
(
2006
).
2.
M. R.
Zachariah
,
Propellants, Explos., Pyrotech.
38
,
7
(
2013
).
3.
D.
Sundaram
,
V.
Yang
, and
R. A.
Yetter
,
Prog. Energy Combust. Sci.
61
,
293
(
2017
).
4.
C. E.
Aumann
,
G. L.
Skofronick
, and
J. A.
Martin
,
J. Vac. Sci. Technol. B
13
,
1178
(
1995
).
5.
G. C.
Egan
and
M. R.
Zachariah
,
Combust. Flame
162
,
2959
(
2015
).
6.
R. J.
Jacob
,
G.
Jian
,
P. M.
Guerieri
, and
M. R.
Zachariah
,
Combust. Flame
162
,
258
(
2015
).
7.
K. T.
Sullivan
,
N. W.
Piekiel
,
C.
Wu
,
S.
Chowdhury
,
S. T.
Kelly
,
T. C.
Hufnagel
,
K.
Fezzaa
, and
M. R.
Zachariah
,
Combust. Flame
159
,
2
(
2012
).
8.
G. Q.
Jian
,
S.
Chowdhury
,
K.
Sullivan
, and
M. R.
Zachariah
,
Combust. Flame
160
,
432
(
2013
).
9.
H.
Wang
,
R. J.
Jacob
,
J. B.
DeLisio
, and
M. R.
Zachariah
,
Combust. Flame
180
,
175
(
2017
).
10.
S. B.
Kim
,
K. J.
Kim
,
M. H.
Cho
,
J. H.
Kim
,
K. T.
Kim
, and
S. H.
Kim
,
ACS Appl. Mater. Interfaces
8
,
9405
(
2016
).
11.
X.
Zhou
,
M.
Torabi
,
J.
Lu
,
R. Q.
Shen
, and
K. L.
Zhang
,
ACS Appl. Mater. Interfaces
6
,
3058
(
2014
).
12.
R. J.
Jacob
,
B.
Wei
, and
M. R.
Zachariah
,
Combust. Flame
163
,
281
289
(
2016
).
13.
R.
Thiruvengadathan
,
A.
Bezmelnitsyn
,
S.
Apperson
,
C.
Staley
,
P.
Redner
,
W.
Balas
,
S.
Nicolich
,
D.
Kapoor
,
K.
Gangopadhyay
, and
S.
Gangopadhyay
,
Combust. Flame
158
,
964
(
2011
).
14.
L.
Zhou
,
N.
Piekiel
,
S.
Chowdhury
, and
M. R.
Zachariah
,
J. Phys. Chem. C
114
,
14269
(
2010
).
15.
S.
Zhang
and
E. L.
Dreizin
,
J. Phys. Chem. C
117
,
14025
(
2013
).
16.
B. S.
Bockmon
,
M. L.
Pantoya
,
S. F.
Son
,
B. W.
Asay
, and
J. T.
Mang
,
J. Appl. Phys.
98
,
064903
(
2005
).
17.
S. H.
Fischer
and
M. C.
Grubelich
, in
32nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference
(
1996
).
18.
V. E.
Sanders
,
B. W.
Asay
,
T. J.
Foley
,
B. C.
Tappan
,
A. N.
Pacheco
, and
S. F.
Son
,
J. Propul. Power
23
,
707
(
2007
).
19.
M. R.
Weismiller
,
J. G.
Lee
, and
R. A.
Yetter
,
Proc. Combust. Inst.
33
,
1933
(
2011
).
20.
K.
Kappagantula
,
C.
Crane
, and
M.
Pantoya
,
Propellants, Explos., Pyrotech.
39
,
434
(
2014
).
21.
K.
Sullivan
and
M. R.
Zachariah
,
J. Propul. Power
26
,
467
(
2010
).
22.
W. L.
Perry
,
B. C.
Tappan
,
B. L.
Reardon
,
V. E.
Sanders
, and
S. F.
Son
,
J. Appl. Phys.
101
,
64313
(
2007
).
23.
D.
Ng
and
G.
Fralick
,
Rev. Sci. Instrum.
72
,
1522
(
2001
).
24.
T.
Fu
,
Z.
Wang
, and
X.
Cheng
,
J. Heat Transfer
132
,
51602
(
2010
).
25.
Theory and Practice of Radiation Thermometry
, edited by
D. P.
DeWitt
and
G. D.
Nutter
(
John Wiley & Sons, Inc
.,
Hoboken, NJ, USA
,
1988
).
26.
J.
Kalman
,
D.
Allen
,
N.
Glumac
, and
H.
Krier
,
J. Thermophys. Heat Transfer
29
,
74
(
2015
).
27.
S.
Goroshin
,
D. L.
Frost
,
J.
Levine
,
A.
Yoshinaka
, and
F.
Zhang
,
Propellants, Explos., Pyrotech.
31
,
169
(
2006
).
28.
P.
Lynch
,
G.
Fiore
,
H.
Krier
, and
N.
Glumac
,
Combust. Sci. Technol.
182
,
842
(
2010
).
29.
J. M.
Densmore
,
M. M.
Biss
,
K. L.
McNesby
, and
B. E.
Homan
,
Appl. Opt.
50
,
2659
(
2011
).
30.
D. C.
Morton
,
Astrophys. J. Suppl. Ser.
149
,
205
(
2003
).
31.
G. C.
Egan
,
T.
LaGrange
, and
M. R.
Zachariah
,
J. Phys. Chem. C
119
,
2792
(
2015
).
32.
P.
Bucher
,
R. A.
Yetter
,
F. L.
Dryer
,
T. P.
Parr
, and
D. M.
Hanson-Parr
, in
Twenty-Seventh Symposium on Combustion
(
1998
), Vol.
1
, p.
2421
.
33.
K. T.
Sullivan
,
O.
Cervantes
,
J. M.
Densmore
,
J. D.
Kuntz
,
A. E.
Gash
, and
J. D.
Molitoris
,
Propellants, Explos., Pyrotech.
40
,
394
(
2015
).
34.
R. J.
Jacob
,
D. L.
Ortiz-Montalvo
,
K. R.
Overdeep
,
T. P.
Weihs
, and
M. R.
Zachariah
,
J. Appl. Phys.
121
,
054307
(
2017
).

Supplementary Material

You do not currently have access to this content.