We report persistent photoconductivity in Mg-doped GdN thin films grown by molecular beam epitaxy. Temperature-dependent measurements were carried out in the time and frequency domains to probe the nature of Mg impurities in GdN. The results reveal an initial fast decay followed by a slow persistent photoconductivity. The magnitude of the photoconductivity as well as the characteristic fast- and slow-decay times was found to decrease systematically with increasing the Mg-doping level. Our experimental results suggest that Mg impurities in epitaxial GdN thin films act as acceptor-like centres. Interestingly they also show that the incorporation of Mg result in a significant decrease in the concentration of nitrogen vacancies, as is demonstrated also to be in agreement with an ab initio calculation.

You do not currently have access to this content.