Explosive crystallization is a well known phenomenon occurring due to the thermodynamic instability of strongly under-cooled liquids, which is particularly relevant in pulsed laser annealing processes of amorphous semiconductor materials due to the globally exothermic amorphous-to-liquid-to-crystal transition pathway. In spite of the assessed understanding of this phenomenon, quantitative predictions of the material kinetics promoted by explosive crystallization are hardly achieved due to the lack of a consistent model able to simulate the concurrent kinetics of the amorphous-liquid and liquid-crystal interfaces. Here, we propose a multi-well phase-field model specifically suited for the simulation of explosive crystallization induced by pulsed laser irradiation in the nanosecond time scale. The numerical implementation of the model is robust despite the discontinuous jumps of the interface speed induced by the phenomenon. The predictive potential of the simulations is demonstrated by means of comparisons of the modelling predictions with experimental data in terms of in situ reflectivity measurements and ex-situ micro-structural and chemical characterization.

1.
M.
Tabbal
,
M. J.
Aziz
,
C.
Madi
,
S.
Charnvanichborikarn
,
J. S.
Williams
, and
T. C.
Christidis
, “
Excimer laser processing of novel materials for optoelectronic and spintronic applications
,”
Proc. SPIE
6458
,
645803
(
2007
).
2.
V. A.
Shklovski
and
V. M.
Kuz'menko
,
Sov. Phys. Usp.
32
,
163
(
1989
).
3.
V. P.
Koverda
,
N. M.
Boganov
, and
V. P.
Skripov
, “
Explosive crystallization of amorphous substances with fixed crystallites
,” in
Growth of Crystals
, edited by
E. I.
Givargizov
and
S. A.
Grinberg
(
Springer US
,
Boston, MA
,
1991
), pp.
69
81
.
4.
G.
Götz
,
Appl. Phys. A
40
,
29
(
1986
).
5.
L.
Nikolova
,
M. J.
Stern
,
J. M.
MacLeod
,
B. W.
Reed
,
H.
Ibrahim
,
G. H.
Campbell
,
F.
Rosei
,
T.
LaGrange
, and
B. J.
Siwick
,
J. Appl. Phys.
116
,
093512
(
2014
).
6.
E. P.
Donovan
,
F.
Spaepen
,
D.
Turnbull
,
J. M.
Poate
, and
D. C.
Jacobson
,
Appl. Phys. Lett.
42
,
698
(
1983
).
7.
E. P.
Donovan
,
F.
Spaepen
,
J. M.
Poate
, and
D. C.
Jacobson
,
Appl. Phys. Lett.
55
,
1516
(
1989
).
8.
M.
Wautelet
,
Phys. Status Solidi B
159
,
K43
(
1990
).
9.
A.
Filipponi
and
A.
Di Cicco
,
Phys. Rev. B
51
,
12322
(
1995
).
10.
P.
Baeri
,
S. U.
Campisano
,
M. G.
Grimaldi
, and
E.
Rimini
,
J. Appl. Phys.
53
,
8730
(
1982
).
11.
M. O.
Thompson
,
G. J.
Galvin
,
J. W.
Mayer
,
P. S.
Peercy
,
J. M.
Poate
,
D. C.
Jacobson
,
A. G.
Cullis
, and
N. G.
Chew
,
Phys. Rev. Lett.
52
,
2360
(
1984
).
12.
A.
La Magna
,
P.
Alippi
,
V.
Privitera
, and
G.
Fortunato
,
Appl. Phys. Lett.
86
,
161905
(
2005
).
13.
O.
Penrose
and
P. C.
Fife
,
Physica D
43
,
44
(
1990
).
14.
S.-L.
Wang
,
R.
Sekerka
,
A.
Wheeler
,
B.
Murray
,
S.
Coriell
,
R.
Braun
, and
G.
McFadden
,
Physica D
69
,
189
(
1993
).
15.
H.
Udaykumar
,
R.
Mittal
, and
W.
Shyy
,
J. Comput. Phys.
153
,
535
(
1999
).
16.
A.
Karma
and
W.-J.
Rappel
,
Phys. Rev. E
57
,
4323
(
1998
).
17.
I.
Singer-Loginova
and
H. M.
Singer
,
Rep. Prog. Phys.
71
,
106501
(
2008
).
18.
S.
Lombardo
,
S.
Boninelli
,
F.
Cristiano
,
G.
Fisicaro
,
G.
Fortunato
,
M.
Grimaldi
,
G.
Impellizzeri
,
M.
Italia
,
A.
Marino
,
R.
Milazzo
,
E.
Napolitani
,
V.
Privitera
, and
A. L.
Magna
,
Mater. Sci. Semicond. Process.
62
,
80
(
2017
).
19.
G.
Fisicaro
,
L.
Pelaz
,
M.
Aboy
,
P.
Lopez
,
M.
Italia
,
K.
Huet
,
F.
Cristiano
,
Z.
Essa
,
Q.
Yang
,
E.
Bedel-Pereira
,
M.
Quillec
, and
A. L.
Magna
,
Appl. Phys. Express
7
,
021301
(
2014
).
20.
J.
Bragard
,
A.
Karma
,
Y. H.
Lee
, and
M.
Plapp
,
Interface Sci.
10
,
121
(
2002
).
21.
H.
Vogel
,
Phys. Z.
22
,
645
646
(
1921
).
22.
23.
S.
Stiffler
,
P.
Evans
, and
A.
Greer
,
Acta Metall. Mater.
40
,
1617
(
1992
).
24.
A. A.
Wheeler
,
W. J.
Boettinger
, and
G. B.
McFadden
,
Phys. Rev. A
45
,
7424
(
1992
).
25.
N. A.
Ahmad
,
A. A.
Wheeler
,
W. J.
Boettinger
, and
G. B.
McFadden
,
Phys. Rev. E
58
,
3436
(
1998
).
26.
I.
Trevi
,
J. M.
Poate
,
G.
Foti
, and
D.
Jacobson
, in
Surface Modification and Alloying by Laser, Ion, and Electron Beams
, edited by
S. S. B.
Media
(
Springer
,
Boston, MA
,
2013
), p.
414
.
27.
P.
Galenko
,
E.
Abramova
,
D.
Jou
,
D.
Danilov
,
V.
Lebedev
, and
D.
Herlach
,
Phys. Rev. E
84
,
041143
(
2011
).
28.
G.
Fisicaro
,
K.
Huet
,
R.
Negru
,
M.
Hackenberg
,
P.
Pichler
,
N.
Taleb
, and
A.
La Magna
,
Phys. Rev. Lett.
110
,
117801
(
2013
).
29.
I.
Štich
,
R.
Car
, and
M.
Parrinello
,
Phys. Rev. Lett.
63
,
2240
(
1989
).
30.
J. T.
Okada
,
P. H.-L.
Sit
,
Y.
Watanabe
,
Y. J.
Wang
,
B.
Barbiellini
,
T.
Ishikawa
,
M.
Itou
,
Y.
Sakurai
,
A.
Bansil
,
R.
Ishikawa
,
M.
Hamaishi
,
T.
Masaki
,
P.-F.
Paradis
,
K.
Kimura
,
T.
Ishikawa
, and
S.
Nanao
,
Phys. Rev. Lett.
108
,
067402
(
2012
).
31.
N.
Jakse
and
A.
Pasturel
,
Phys. Rev. B
79
,
144206
(
2009
).
32.
P. M.
Fahey
,
P. B.
Griffin
, and
J. D.
Plummer
,
Rev. Mod. Phys.
61
,
289
(
1989
).
33.
G.
Fisicaro
and
A.
La Magna
,
J. Comput. Electron.
13
,
70
(
2014
).
You do not currently have access to this content.