Hydrogen-terminated diamond is known for its unusually high surface conductivity that is ascribed to its negative electron affinity. In the presence of acceptor molecules, electrons are expected to transfer from the surface to the acceptor, resulting in p-type surface conductivity. Here, we present Kelvin probe force microscopy (KPFM) measurements on carbon nanotubes and C60 adsorbed onto a hydrogen-terminated diamond(001) surface. A clear reduction in the Kelvin signal is observed at the position of the carbon nanotubes and C60 molecules as compared with the bare, air-exposed surface. This result can be explained by the high positive electron affinity of carbon nanotubes and C60, resulting in electron transfer from the surface to the adsorbates. When an oxygen-terminated diamond(001) is used instead, no reduction in the Kelvin signal is obtained. While the presence of a charged adsorbate or a difference in work function could induce a change in the KPFM signal, a charge transfer effect of the hydrogen-terminated diamond surface, by the adsorption of the carbon nanotubes and the C60 fullerenes, is consistent with previous theoretical studies.

1.
G. E.
Harlow
,
The Nature of Diamonds
(
Cambridge University Press
,
1998
).
2.
L.
Wei
,
P. K.
Kuo
,
R. L.
Thomas
,
T. R.
Anthony
, and
W. F.
Banholzer
,
Phys. Rev. Lett.
70
,
3764
(
1993
).
3.
J.
Ristein
,
Surf. Sci.
600
,
3677
(
2006
).
4.
M. I.
Landstrass
and
K. V.
Ravi
,
Appl. Phys. Lett.
55
,
975
(
1989
).
5.
F.
Maier
,
M.
Riedel
,
B.
Mantel
,
J.
Ristein
, and
L.
Ley
,
Phys. Rev. Lett.
85
,
3472
(
2000
).
6.
K.
Bobrov
,
A. J.
Mayne
, and
G.
Dujardin
,
Nature
413
,
616
(
2001
).
7.
M.
Nimmrich
,
M.
Kittelmann
,
P.
Rahe
,
A. J.
Mayne
,
G.
Dujardin
,
A.
von Schmidsfeld
,
M.
Reichling
,
W.
Harneit
, and
A.
Kühnle
,
Phys. Rev. B
81
,
201403(R)
(
2010
).
8.
P.
Strobel
,
M.
Riedel
,
J.
Ristein
, and
L.
Ley
,
Nature
430
,
439
(
2004
).
9.
S. J.
Sque
,
R.
Jones
,
S.
Öberg
, and
P. R.
Briddon
,
Phys. Status Solidi A
203
,
3107
(
2006
).
10.
S. J.
Sque
,
R.
Jones
,
S.
Öberg
, and
P. R.
Briddon
,
J. Mater. Sci.: Mater. Electron.
17
,
459
(
2006
).
11.
S. J.
Sque
,
R.
Jones
,
S.
Öberg
, and
P. R.
Briddon
,
Phys. Rev. B
75
,
115328
(
2007
).
12.
S. J.
Sque
,
C. P.
Ewels
,
R.
Jones
, and
P. R.
Briddon
,
Phys. Status Solidi A
204
,
2898
(
2007
).
13.
C.
Barth
,
T.
Hynninen
,
M.
Bieletzki
,
C. R.
Henry
,
A. S.
Foster
,
F.
Esch
, and
U.
Heiz
,
New J. Phys.
12
,
093024
(
2010
).
14.
T.
Hynninen
,
A. S.
Foster
, and
C.
Barth
,
e-J. Surf. Sci. Nanotechnol.
9
,
6
(
2011
).
15.
J. L.
Neff
and
P.
Rahe
,
Phys. Rev. B
91
,
085424
(
2015
).
16.
H.
Söngen
,
P.
Rahe
,
J. L.
Neff
,
R.
Bechstein
,
J.
Ritala
,
A. S.
Foster
, and
A.
Kühnle
,
J. Appl. Phys.
119
,
025304
(
2016
).
17.
C. I.
Pakes
,
D.
Hoxley
,
J. R.
Rabeau
,
M. T.
Edmonds
,
R.
Kalish
, and
S.
Prawer
,
Appl. Phys. Lett.
95
,
123108
(
2009
).
18.
M.
Nimmrich
,
M.
Kittelmann
,
P.
Rahe
,
W.
Harneit
,
A. J.
Mayne
,
G.
Dujardin
, and
A.
Kühnle
,
Phys. Rev. B
85
,
035420
(
2012
).
19.
T.
Glatzel
,
S.
Sadewasser
, and
M. C.
Lux-Steiner
,
Appl. Surf. Sci.
210
,
84
(
2003
).
20.
W.
Melitz
,
J.
Shen
,
A. C.
Kummel
, and
S.
Lee
,
Surf. Sci. Rep.
66
,
1
(
2011
).
21.
M.
Nonnenmacher
,
M. P.
O'Boyle
, and
H. K.
Wickramasinghe
,
Appl. Phys. Lett.
58
,
2921
(
1991
).
22.
S.
Sadewasser
and
T.
Glatzel
,
Kelvin Probe Force Microscopy
,
Springer Series in Surface Sciences (Springer
,
2012
).
23.
L. N.
Kantorovich
,
A. I.
Livshits
, and
M.
Stoneham
,
J. Phys.: Condens. Matter
12
,
795
(
2000
).
24.
A.
Sadeghi
,
A.
Baratoff
, and
S.
Goedecker
,
Phys. Rev. B
88
,
035436
(
2013
).
25.
E.
Tranvouez
,
E.
Boer-Duchemin
,
A. J.
Mayne
,
T.
Vanderbruggen
,
M.
Scheele
,
R.
Cartwright
,
G.
Comtet
,
G.
Dujardin
,
O.
Schneegans
,
P.
Chrétien
, and
F.
Houzé
,
J. Appl. Phys.
106
,
054301
(
2009
).
26.
L.
Hellner
,
A. J.
Mayne
,
R.
Bernard
, and
G.
Dujardin
,
Diamond Relat. Mater.
14
,
1529
(
2005
).
27.
A. J.
Mayne
,
D.
Riedel
,
G.
Comtet
, and
G.
Dujardin
,
Prog. Surf. Sci.
81
,
1
(
2006
).
28.
D.
Obergfell
,
J. C.
Meyer
,
M.
Haluska
,
A. N.
Khlobystov
,
S.
Yang
,
L.
Fan
,
D.
Liu
, and
S.
Roth
,
Phys. Status Solidi B
243
,
3430
(
2006
).
29.
M.
Ashino
,
D.
Obergfell
,
M.
Haluska
,
S.
Yang
,
A. N.
Khlobystov
,
S.
Roth
, and
R.
Wiesendanger
,
Nanotechnology
20
,
264001
(
2009
).
30.
M. F.
Islam
,
E.
Rojas
,
D. M.
Bergey
,
A. T.
Johnson
, and
A. G.
Yodh
,
Nano Lett.
3
,
269
(
2003
).
31.
J.
Liu
,
M. J.
Casavant
,
M.
Cox
,
D. A.
Walters
,
P.
Boul
,
W.
Lu
,
A. J.
Rimberg
,
K. A.
Smith
,
D. T.
Colbert
, and
R. E.
Smalley
,
Chem. Phys. Lett.
303
,
125
(
1999
).
32.
H. T.
Ham
,
Y. S.
Choi
, and
I. J.
Chung
,
J. Colloid Interface Sci.
286
,
216
(
2005
).
33.
A.
Galano
,
Chem. Phys.
327
,
159
(
2006
).
34.
F.
Buonocore
,
F.
Trani
,
D.
Ninno
,
A. D.
Matteo
,
G.
Cantele
, and
G.
Iadonisi
,
Nanotechnology
19
,
025711
(
2008
).
35.
P.
Rahe
,
R.
Lindner
,
M.
Kittelmann
,
M.
Nimmrich
, and
A.
Kühnle
,
Phys. Chem. Chem. Phys.
14
,
6544
(
2012
).
36.
F.
Maier
,
J.
Ristein
, and
L.
Ley
,
Phys. Rev. B
64
,
165411
(
2001
).
37.
J. B.
Cui
,
J.
Ristein
, and
L.
Ley
,
Phys. Rev. Lett.
81
,
429
(
1998
).
38.
S. H.
Yang
,
C. L.
Pettiette
,
J.
Conceicao
,
O.
Cheshnovsky
, and
R. E.
Smalley
,
Chem. Phys. Lett.
139
,
233
(
1987
).
39.
D.-L.
Huang
,
P. D.
Dau
,
H.-T.
Liu
, and
L.-S.
Wang
,
J. Chem. Phys.
140
,
224315
(
2014
).
40.
P.
Strobel
,
M.
Riedel
,
J.
Ristein
,
L.
Ley
, and
O.
Boltalina
,
Diamond Relat. Mater.
14
,
451
(
2005
).

Supplementary Material

You do not currently have access to this content.