Surface severe plastic deformation (SSPD) has been demonstrated to improve the ductility of metallic glass. The physical interpretation, however, remains on the phenomenological level. In this study, a molecular dynamics (MD) simulation is carried out to elucidate the molecular mechanisms underlying the improvement in ductility. MD simulation reveals that shock waves resulting from SSPD can induce pre-deformed atoms, which are randomly embedded in the matrix of the metallic glass. The pre-deformed atoms have similar stress distribution and short-order structure as the matrix atoms, but with a larger atomic volume. When subjected to tensile or compressive stress, more shear bands are promoted by the pre-deformed atoms in the shock-treated sample as compared to the untreated one. The randomly distributed shear bands were found to experience more interactions, which delayed the catastrophic fracture, leading to increased ductility.

1.
J.-L.
Barrat
and
J. J.
de Pablo
,
MRS Bull.
32
,
941
(
2007
).
2.
M.
Talamali
,
V.
Petäjä
,
D.
Vandembroucq
, and
S.
Roux
,
C. R. Mec.
340
,
275
(
2012
).
3.
M. L.
Falk
and
J. S.
Langer
,
Annu. Rev. Condens. Matter Phys.
2
,
353
(
2011
).
4.
A.
Lemaître
and
C.
Caroli
, preprint arXiv:Cond-mat/0609689.
5.
D.
Vandembroucq
and
S.
Roux
,
Phys. Rev. B
84
,
134210
(
2011
).
6.
S.
Takeuchi
and
K.
Edagawa
,
Prog. Mater. Sci.
56
,
785
(
2011
).
7.
C. A.
Schuh
,
T. C.
Hufnagel
, and
U.
Ramamurty
,
Acta Mater.
55
,
4067
(
2007
).
8.
A. L.
Greer
,
Y. Q.
Cheng
, and
E.
Ma
,
Mater. Sci. Eng. R
74
,
71
(
2013
).
9.
F.
Spaepen
,
Acta Metall.
25
,
407
(
1977
).
10.
A. S.
Argon
,
Acta Metall.
27
,
47
(
1979
).
11.
M. M.
Trexler
and
N. N.
Thadhani
,
Prog. Mater. Sci.
55
,
759
(
2010
).
12.
Y.
Zhang
,
W. H.
Wang
, and
A. L.
Greer
,
Nat. Mater.
5
,
857
(
2006
).
13.
Y.
Cao
,
X.
Xie
,
J.
Antonaglia
,
B.
Winiarski
,
G.
Wang
,
Y. C.
Shin
,
P. J.
Withers
,
K. A.
Dahmen
, and
P. K.
Liaw
,
Sci. Rep.
5
,
10789
(
2015
).
14.
C.
Ma
,
H.
Qin
,
Z.
Ren
,
S. C.
O'Keeffe
,
J.
Stevick
,
G. L.
Doll
,
Y.
Dong
,
B.
Winiarski
, and
C.
Ye
,
J. Alloys Compd.
718
,
246
(
2017
).
15.
Q.
Wang
,
Y.
Yang
,
H.
Jiang
,
C. T.
Liu
,
H. H.
Ruan
, and
J.
Lu
,
Sci. Rep.
4
,
4757
(
2014
).
16.
S. H.
Joo
,
D. H.
Pi
,
A. D. H.
Setyawan
,
H.
Kato
,
M.
Janecek
,
Y. C.
Kim
,
S.
Lee
, and
H. S.
Kim
,
Sci. Rep.
5
,
9660
(
2015
).
17.
G.
Wu
,
R.
Li
,
Z.
Liu
,
B.
Chen
,
Y.
Li
,
Y.
Cai
, and
T.
Zhang
,
Intermetallics
24
,
50
(
2012
).
18.
A.
Hirata
,
P.
Guan
,
T.
Fujita
,
Y.
Hirotsu
,
A.
Inoue
,
A. R.
Yavari
,
T.
Sakurai
, and
M.
Chen
,
Nat. Mater.
10
,
28
(
2011
).
19.
Y. Q.
Cheng
,
A. J.
Cao
, and
E.
Ma
,
Acta Mater.
57
,
3253
(
2009
).
20.
A. J.
Cao
,
Y. Q.
Cheng
, and
E.
Ma
,
Acta Mater.
57
,
5146
(
2009
).
21.
S.
Feng
,
L.
Qi
,
L.
Wang
,
S.
Pan
,
M.
Ma
,
X.
Zhang
,
G.
Li
, and
R.
Liu
,
Acta Mater.
95
,
236
(
2015
).
22.
A. S.
Argon
and
L. T.
Shi
,
Acta Metall.
31
,
499
(
1983
).
23.
D.
Turnbull
and
M. H.
Cohen
,
J. Chem. Phys.
52
,
3038
(
1970
).
24.
M. L.
Falk
and
J. S.
Langer
,
Phys. Rev. E
57
,
7192
(
1998
).
25.
M. L.
Falk
,
Phys. Rev. B
60
,
7062
(
1999
).
26.
J. S.
Langer
,
Phys. Rev. E
77
,
21502
(
2008
).
27.
J. S.
Langer
and
L.
Pechenik
,
Phys. Rev. E
68
,
61507
(
2003
).
28.
S.-P.
Ju
,
H.-H.
Huang
, and
T.-Y.
Wu
,
Comput. Mater. Sci.
96
,
56
(
2015
).
29.
J.
Ding
,
Y. Q.
Cheng
, and
E.
Ma
,
Appl. Phys. Lett.
104
,
11912
(
2014
).
30.
K.
Albe
,
Y.
Ritter
, and
D.
Şopu
,
Mech. Mater.
67
,
94
(
2013
).
31.
Y.
Zhang
,
N.
Mattern
, and
J.
Eckert
,
J. Appl. Phys.
111
,
053520
(
2012
).
32.
Y. Q.
Cheng
,
E.
Ma
, and
H. W.
Sheng
,
Phys. Rev. Lett.
102
,
1
(
2009
).
33.
Y.
Shi
and
M. L.
Falk
,
Acta Mater.
56
,
995
(
2008
).
34.
Y. Q.
Cheng
,
H. W.
Sheng
, and
E.
Ma
,
Phys. Rev. B
78
,
14207
(
2008
).
35.
F.
Shimizu
,
S.
Ogata
, and
J.
Li
,
Mater. Trans.
48
,
2923
(
2007
).
36.
S.
Ogata
,
F.
Shimizu
,
J.
Li
,
M.
Wakeda
, and
Y.
Shibutani
,
Intermetallics
14
,
1033
(
2006
).
37.
G.
Duan
,
D.
Xu
,
Q.
Zhang
,
G.
Zhang
,
T.
Cagin
,
W. L.
Johnson
, and
W. A.
Goddard
,
Phys. Rev. B -Condens. Matter Mater. Phys.
71
,
224208
(
2005
).
38.
J.
Plummer
,
Nat. Mater.
14
,
553
(
2015
).
39.
M. I.
Mendelev
,
M. J.
Kramer
,
R. T.
Ott
,
D. J.
Sordelet
,
D.
Yagodin
, and
P.
Popel
,
Philos. Mag.
89
,
967
(
2009
).
40.
S.
Plimpton
,
J. Comput. Phys.
117
,
1
(
1995
).
41.
A.
Stukowski
,
Model. Simul. Mater. Sci. Eng.
18
,
015012
(
2009
).
42.
D.
Tramontina
,
P.
Erhart
,
T.
Germann
,
J.
Hawreliak
,
A.
Higginbotham
,
N.
Park
,
R.
Ravelo
,
A.
Stukowski
,
M.
Suggit
,
Y.
Tang
,
J.
Wark
, and
E.
Bringa
,
High Energy Density Phys.
10
,
9
(
2014
).
43.
M. M.
Budzevich
,
V. V.
Zhakhovsky
,
C. T.
White
, and
I. I.
Oleynik
,
Phys. Rev. Lett.
109
,
125505
(
2012
).
44.
B. A.
Sun
,
S.
Pauly
,
J.
Tan
,
M.
Stoica
,
W. H.
Wang
,
U.
Kühn
, and
J.
Eckert
,
Acta Mater.
60
,
4160
(
2012
).
45.
Y. Q.
Cheng
and
E.
Ma
,
Prog. Mater. Sci.
56
,
379
(
2011
).
46.
R.
Rezaei
,
M.
Shariati
,
H.
Tavakoli-Anbaran
, and
C.
Deng
,
Comput. Mater. Sci.
119
,
19
(
2016
).
47.
C.
Zhong
,
H.
Zhang
,
Q. P.
Cao
,
X. D.
Wang
,
D. X.
Zhang
,
U.
Ramamurty
, and
J. Z.
Jiang
,
Sci. Rep.
6
,
30935
(
2016
).
48.
D.
Sopu
,
M.
Stoica
, and
J.
Eckert
,
Appl. Phys. Lett.
106
,
211902
(
2015
).
49.
T.
Egami
,
Prog. Mater. Sci.
56
,
637
(
2011
).
50.
Y. Q.
Cheng
,
J.
Ding
, and
E.
Ma
,
Mater. Res. Lett.
1
,
3
(
2013
).
51.
A. K.
Subramaniyan
and
C. T.
Sun
,
Int. J. Solids Struct.
45
,
4340
(
2008
).
52.
R. J.
Swenson
,
Am. J. Phys.
51
,
940
(
1983
).
53.
D. H. H.
Tsai
,
J. Chem. Phys.
70
,
1375
(
1979
).
54.
J. A.
Zimmerman
,
E. B.
Webb
,
J. J.
Hoyt
,
R. E.
Jones
,
P. A.
Klein
, and
D. J.
Bammann
,
Comput. Fluid Solid Mech.
2003
,
804
(
2003
).
55.
C.
Tang
and
C. H.
Wong
,
Intermetallics
58
,
50
(
2015
).
56.
J. J.
Lewandowski
and
A. L.
Greer
,
Nat. Mater.
5
,
15
(
2006
).
57.
W.
Shinoda
and
S.
Okazaki
,
J. Chem. Phys.
109
,
1517
(
1998
).
58.
J.
Ding
,
Y.-Q.
Cheng
, and
E.
Ma
,
Acta Mater.
69
,
343
(
2014
).
59.
W.
Gao
,
S.-D.
Feng
,
L.
Qi
,
S.-L.
Zhang
, and
R.-P.
Liu
,
Chin. Phys. Lett.
32
,
116101
(
2015
).
60.
S.
Feng
,
L.
Qi
,
F.
Zhao
,
S.
Pan
,
G.
Li
,
M.
Ma
, and
R.
Liu
,
Mater. Des.
80
,
36
(
2015
).
61.
J.
Fu
,
Y.
Zhu
,
C.
Zheng
,
R.
Liu
, and
Z.
Ji
,
Appl. Surf. Sci.
313
,
692
(
2014
).
62.
C.
Ye
,
A.
Telang
,
A. S.
Gill
,
S.
Suslov
,
Y.
Idell
,
K.
Zweiacker
,
J. M. K.
Wiezorek
,
Z.
Zhou
,
D.
Qian
,
S. R.
Mannava
,
V. K.
Vasudevan
,
S.
Ramaiah Mannava
, and
V. K.
Vasudevan
,
Mater. Sci. Eng. A
613
,
274
(
2014
).
63.
C.
Ye
,
S.
Suslov
,
B. J.
Kim
,
E. A.
Stach
, and
G. J.
Cheng
,
Acta Mater.
59
,
1014
(
2011
).
64.
R. Z.
Valiev
,
A. V.
Korznikov
, and
R. R.
Mulyukov
,
Mater. Sci. Eng. A
168
,
141
(
1993
).
65.
V. V.
Stegaĭlov
and
A. V.
Yanilkin
,
J. Exp. Theor. Phys.
104
,
928
(
2007
).
66.
R.
Ravelo
,
T. C.
Germann
,
O.
Guerrero
,
Q.
An
, and
B. L.
Holian
,
Phys. Rev. B -Condens. Matter Mater. Phys.
88
,
134101
(
2013
).
67.
M. J.
Cawkwell
,
T. D.
Sewell
,
L.
Zheng
, and
D. L.
Thompson
,
Phys. Rev. B -Condens. Matter Mater. Phys.
78
,
014107
(
2008
).
68.
H. N.
Jarmakani
,
E. M.
Bringa
,
P.
Erhart
,
B. A.
Remington
,
Y. M.
Wang
,
N. Q.
Vo
, and
M. A.
Meyers
,
Acta Mater.
56
,
5584
(
2008
).
69.
A. J.
Liu
and
S. R.
Nagel
,
Nature
396
,
21
(
1998
).
70.
C.
O'hern
,
L.
Silbert
, and
S.
Nagel
,
Phys. Rev. E
68
,
11306
(
2003
).
You do not currently have access to this content.