Many electrically assisted processes have been reported to induce changes in microstructure and metal plasticity. To understand the physics-based mechanisms behind these interesting phenomena, however, requires an understanding of the interaction between the electric current and heterogeneous microstructure. In this work, multiscale modeling of the electric current flow in a nanocrystalline material is reported. The cellular automata method was used to track the nanoscale grain boundaries in the matrix. Maxwell's electromagnetic equations were solved to obtain the electrical potential distribution at the macro scale. Kirchhoff's circuit equation was solved to obtain the electric current flow at the micro/nano scale. The electric current distribution at two representative locations was investigated. A significant electric current concentration was observed near the grain boundaries, particularly near the triple junctions. This higher localized electric current leads to localized resistive heating near the grain boundaries. The electric current distribution could be used to obtain critical information such as localized resistive heating rate and extra system free energy, which are critical for explaining many interesting phenomena, including microstructure evolution and plasticity enhancement in many electrically assisted processes.

1.
W. A.
Salandro
,
J. J.
Jones
,
C.
Bunget
,
L.
Mears
, and
J. T.
Roth
,
Electrically Assisted Forming
(
Springer
,
2015
), pp.
23
36
.
2.
E. S.
Machlin
,
J. Appl. Phys.
30
,
1109
(
1959
).
3.
O. A.
Troitskii
,
Strength Mater.
8
,
1466
(
1976
).
4.
O. A.
Troitskii
,
ZhETF Pisma Redaktsiiu
10
,
18
(
1969
).
5.
K.
Okazaki
,
M.
Kagawa
, and
H.
Conrad
,
Mater. Sci. Eng.
45
,
109
(
1980
).
6.
O. A.
Troitskii
,
JETP Lett.
10
,
11
(
1969
).
7.
X.
Li
,
X.
Li
,
J.
Zhu
,
X.
Ye
, and
G.
Tang
,
Scr. Mater.
112
,
23
(
2016
).
8.
R. F.
Zhu
,
J. N.
Liu
,
G. Y.
Tang
,
S. Q.
Shi
,
M. W.
Fu
, and
Z. T. H.
Tse
,
J. Alloys Compd.
584
,
225
(
2014
).
9.
H.
Wang
,
L.
Chen
,
D.
Liu
,
G.
Song
, and
G.
Tang
,
Mater. Sci. Technol.
31
,
1564
(
2015
).
10.
V. E.
Gromov
,
Y. F.
Ivanov
,
O. A.
Stolboushkina
, and
S. V.
Konovalov
,
Mater. Sci. Eng. A
527
,
858
(
2010
).
11.
M. I.
Molotskii
and
V.
Fleurov
,
Phys. Rev.
52
,
15829
(
1995
).
12.
M. I.
Molotskii
,
Mater. Sci. Eng. A
287
,
248
(
2000
).
13.
A. A.
Kopanev
,
Strength Mater.
23
,
55
(
1991
).
14.
S. D.
Antolovich
and
H.
Conrad
,
Mater. Manuf. Process.
19
,
587
(
2004
).
15.
A. F.
Sprecher
,
S. L.
Mannan
, and
H.
Conrad
,
Acta Metall.
34
,
1145
(
1986
).
16.
H.
Conrad
,
Mater. Sci. Eng. A
287
,
276
(
2000
).
17.
K.
Okazaki
,
M.
Kagawa
, and
H.
Conrad
,
Scr. Metall.
12
,
1063
(
1978
).
18.
K.
Okazaki
,
M.
Kagawa
, and
H.
Conrad
,
Scr. Metall.
13
,
473
(
1979
).
19.
H.
Conrad
,
J.
White
,
W. D.
Cao
,
X. P.
Lu
, and
A. F.
Sprecher
,
Mater. Sci. Eng. A
145
,
1
(
1991
).
20.
J.
Magargee
,
F.
Morestin
, and
J.
Cao
,
J. Eng. Mater. Technol.
135
,
41003
(
2013
).
21.
R.
Fan
,
J.
Magargee
,
P.
Hu
, and
J.
Cao
,
Mater. Sci. Eng. A
574
,
218
(
2013
).
22.
M.-K.
Ng
,
L.
Li
,
Z.
Fan
,
R. X.
Gao
,
E. F.
Smith
 III
,
K. F.
Ehmann
, and
J.
Cao
,
CIRP Ann.
64
,
273
(
2015
).
23.
X.
Wang
,
J.
Xu
,
D.
Shan
,
B.
Guo
, and
J.
Cao
,
Mater. Des.
127
,
134
(
2017
).
24.
D. K.
Xu
,
B.
Lu
,
T. T.
Cao
,
H.
Zhang
,
J.
Chen
,
H.
Long
, and
J.
Cao
,
Mater. Des.
92
,
268
(
2016
).
25.
H.-D.
Nguyen-Tran
,
H.-S.
Oh
,
S.-T.
Hong
,
H. N.
Han
,
J.
Cao
,
S.-H.
Ahn
, and
D.-M.
Chun
,
Int. J. Precis. Eng. Manuf. Technol.
2
,
365
(
2015
).
26.
X.
Wang
,
J.
Xu
,
D.
Shan
,
B.
Guo
, and
J.
Cao
,
Int. J. Plast.
85
,
230
(
2016
).
27.
J. S.
Andrawes
,
T. J.
Kronenberger
,
T. A.
Perkins
,
J. T.
Roth
, and
R. L.
Warley
,
Mater. Manuf. Process.
22
,
91
(
2007
).
28.
T. A.
Perkins
,
T. J.
Kronenberger
, and
J. T.
Roth
,
J. Manuf. Sci. Eng.
129
,
84
(
2007
).
29.
J. T.
Roth
,
I.
Loker
,
D.
Mauck
, and
M.
Warner
, in
North American Manufacturing Research Conference
(
2008
), pp.
405
412
.
30.
W. A.
Salandro
,
J. J.
Jones
,
T. A.
McNeal
,
J. T.
Roth
,
S.-T.
Hong
, and
M. T.
Smith
,
J. Manuf. Sci. Eng.
132
,
51016
(
2010
).
31.
C. D.
Ross
,
D. B.
Irvin
, and
J. T.
Roth
,
J. Eng. Mater. Technol.
129
,
342
(
2007
).
32.
T. J.
Kronenberger
,
D. H.
Johnson
, and
J. T.
Roth
,
J. Manuf. Sci. Eng.
131
,
31003
(
2009
).
33.
C. D.
Ross
,
T. J.
Kronenberger
, and
J. T.
Roth
,
J. Eng. Mater. Technol.
131
,
31004
(
2009
).
34.
W. A.
Salandro
,
C. J.
Bunget
, and
L.
Mears
,
J. Manuf. Sci. Eng.
133
,
64503
(
2011
).
35.
W. a.
Salandro
,
C.
Bunget
, and
L.
Mears
,
J. Manuf. Sci. Eng.
133
,
41008
(
2011
).
36.
J. J.
Jones
and
L.
Mears
,
J. Manuf. Sci. Eng.
135
,
021011
(
2013
).
37.
J. J.
Jones
,
L.
Mears
, and
J. T.
Roth
,
J. Manuf. Sci. Eng.
134
,
34504
(
2012
).
38.
W.
Salandro
,
J.
Jones
,
C.
Bunget
,
L.
Mears
, and
J.
Roth
, 355 (
2015
).
39.
W. A.
Salandro
,
J. J.
Jones
,
C.
Bunget
,
L.
Mears
, and
J. T.
Roth
,
Electrically Assisted Forming Modeling and Control
(
Springer
,
2015
).
40.
A.
Jordan
and
B. L.
Kinsey
,
J. Mater. Process. Technol.
221
,
1
(
2015
).
41.
M. S.
Siopis
,
B. L.
Kinsey
,
N.
Kota
, and
O. B.
Ozdoganlar
,
J. Manuf. Sci. Eng.
133
,
64502
(
2011
).
42.
C. M.
Dzialo
,
M. S.
Siopis
,
B. L.
Kinsey
, and
K. J.
Weinmann
,
CIRP Ann.
59
,
299
(
2010
).
43.
M. S.
Siopis
and
B. L.
Kinsey
,
J. Manuf. Sci. Eng.
132
,
21004
(
2010
).
44.
B.
Kinsey
,
G.
Cullen
,
A.
Jordan
, and
S.
Mates
,
CIRP Ann.
62
,
279
(
2013
).
45.
J. Y.
Liu
and
K. F.
Zhang
,
Mater. Sci. Technol.
32
,
540
(
2016
).
46.
A. J.
Sánchez Egea
,
H. a.
González Rojas
,
C. a.
Montilla Montaña
, and
V.
Kallewaard Echeverri
,
J. Mater. Process. Technol.
222
,
327
(
2015
).
47.
X.
Ye
,
Z. T. H.
Tse
,
G.
Tang
, and
G.
Song
,
Mater. Charact.
98
,
147
(
2014
).
48.
H.
Liao
,
G.
Tang
,
Y.
Jiang
,
Q.
Xu
,
S.
Sun
, and
J.
Liu
,
Mater. Sci. Eng. A
529
,
138
(
2011
).
49.
Z.
Xu
,
G.
Tang
,
S.
Tian
,
F.
Ding
, and
H.
Tian
,
J. Mater. Process. Technol.
182
,
128
(
2007
).
50.
G.
Hu
,
Z.
Wang
,
Y.
Zhu
,
J.
Liu
, and
G.
Tang
,
Mater. Trans.
52
,
1565
(
2011
).
51.
Y.
Ye
,
X.
Li
,
J.
Kuang
,
Y.
Geng
, and
G.
Tang
,
Mater. Sci. Technol.
31
,
1583
(
2015
).
52.
X.
Ye
,
T.
Liu
,
Y.
Ye
,
H.
Wang
,
G.
Tang
, and
G.
Song
,
J. Alloys Compd.
621
,
66
(
2015
).
53.
X.
Ye
,
Y.
Ye
, and
G.
Tang
,
J. Mech. Behav. Biomed. Mater.
40
,
287
(
2014
).
54.
D.
Liu
,
X.
Li
,
G.
Tang
,
L.
Chen
,
H.
Wang
, and
G.
Song
,
Mater. Sci. Technol.
31
,
1572
(
2015
).
55.
A.
Rahnama
and
R.
Qin
,
Sci. Rep.
7
,
1
(
2017
).
56.
R. S.
Qin
,
A.
Rahnama
,
W. J.
Lu
,
X. F.
Zhang
, and
B.
Elliott-Bowman
,
Mater. Sci. Technol.
30
,
1040
(
2014
).
57.
Y.
Jiang
,
L.
Guan
, and
G.
Tang
,
J. Alloys Compd.
656
,
272
(
2016
).
58.
Y.
Jiang
,
G.
Tang
,
C.
Shek
,
J.
Xie
,
Z.
Xu
, and
Z.
Zhang
,
J. Alloys Compd.
536
,
94
(
2012
).
59.
W. P.
Yu
,
R. S.
Qin
, and
K. M.
Wu
,
Adv. Mater. Res.
146-147
,
1849
1854
(
2010
).
60.
Y. S.
Zheng
,
G. Y.
Tang
,
J.
Kuang
, and
X. P.
Zheng
,
J. Alloys Compd.
615
,
849
(
2014
).
61.
Y.
Jiang
,
L.
Guan
,
G.
Tang
, and
Z.
Zhang
,
J. Alloys Compd.
626
,
297
(
2015
).
62.
X.
Xu
,
Y.
Zhao
,
B.
Ma
, and
M.
Zhang
,
J. Alloys Compd.
610
,
506
(
2014
).
63.
O. V.
Sosnin
,
A. V.
Gromova
,
E. Y.
Suchkova
,
E. V.
Kozlov
,
Y. F.
Ivanov
, and
V. E.
Gromov
,
Int. J. Fatigue
27
,
1221
(
2005
).
64.
R. F.
Zhu
,
G. Y.
Tang
,
S. Q.
Shi
, and
M. W.
Fu
,
J. Alloys Compd.
581
,
160
(
2013
).
65.
R.
Qin
and
S.
Su
,
J. Mater. Res.
17
,
2048
(
2002
).
66.
R. S.
Qin
,
Mater. Sci. Technol.
31
,
203
(
2015
).
67.
R. S.
Qin
and
A.
Bhowmik
,
Mater. Sci. Technol.
31
,
1560
(
2014
).
68.
D.
Leenov
and
A.
Kolin
,
J. Chem. Phys.
22
,
683
(
1954
).
69.
Y.
Dolinsky
and
T.
Elperin
,
Phys. Rev. B
50
,
52
(
1994
).
70.
J. M.
Howe
,
Interfaces in Materials: Atomic Structure, Thermodynamics and Kinetics of Solid-Vapor, Solid-Liquid and Solid-Solid Interfaces
(
Wiley
,
1997
).
71.
I.
Kaur
,
Y.
Mishin
, and
W.
Gust
,
Fundamentals of Grain and Interphase Boundary Diffusion
(
Wiley
,
1995
).
72.
R.
Qin
,
Y.
Luo
,
B.
Elliott-Bowman
, and
O.
Omoigiade
, “Fabrication of nanostructured pearlite steel wires using electropulsing,”
Mater. Sci. Technol.
(published online
2017
).
73.
J.
Zhao
,
G.-X.
Wang
,
C.
Ye
, and
Y.
Dong
,
Comput. Mater. Sci.
118
,
342
(
2016
).
74.
D.
Gerling
, in
International Conference on Electrical Machines and Systems 2009, ICEMS 2009
(IEEE,
2009
), pp.
1
6
.
75.
P.
Lejcek
,
Grain Boundary Segregation in Metals
(
Springer Science & Business Media
,
2010
).
76.
J. C. M.
Garnett
,
Philos. Trans. R. Soc. London, A
203
,
385
(
1904
).
77.
J. R.
Kalnin
,
E. A.
Kotomin
, and
J.
Maier
,
J. Phys. Chem. Solids
63
,
449
(
2002
).
78.
K.
Lu
,
Mater. Sci. Eng., R
16
,
161
(
1996
).
79.
D.-B.
Zhou
,
S.-P.
Wang
,
S.-G.
Wang
,
H.-J.
Ai
, and
J.
Xu
,
J. Mater. Sci. Technol.
32
,
496
(
2016
).
80.
U.
Seydel
and
W.
Fucke
,
J. Phys. F: Met. Phys.
10
,
L203
(
2000
).
81.
F.
Aurenhammer
,
ACM Comput. Surv.
23
,
345
(
1991
).
82.
J. C.
Fisher
,
J. Appl. Phys.
22
,
74
(
1951
).
83.
J.
Zhao
,
G.-X.
Wang
,
C.
Ye
, and
Y.
Dong
,
Comput. Mater. Sci.
136
,
243
(
2017
).
84.
Y.
Zhou
,
W.
Zhang
,
B.
Wang
, and
J.
Guo
,
J. Mater. Res.
18
,
1991
(
2003
).
85.
A.
Bagri
,
S.-P.
Kim
,
R. S.
Ruoff
, and
V. B.
Shenoy
,
Nano Lett.
11
,
3917
(
2011
).
86.
S.
Wang
and
R. H.
Victora
,
J. Appl. Phys.
117
,
17D147
(
2015
).
You do not currently have access to this content.