The manuscript reports the synthesis as well as a comparative investigation of the structural, magnetic, and optical properties between sillenite and perovskite type bismuth ferrite-reduced graphene oxide nanocomposites. Graphite oxide is prepared using the modified Hummers' method, followed by hydrothermal synthesis of bismuth ferrite-reduced graphene oxide nanocomposites at different reaction temperatures. The X-ray diffraction measurements confirm the formation of perovskite type BiFeO3-rGO nanocomposites at a reaction temperature of 200 °C. This is the lowest temperature to obtain perovskite type BiFeO3-rGO nanocomposites under the reaction procedure adopted, however, a structural transition to sillenite type Bi25FeO40-rGO is observed at 180 °C. The FESEM images demonstrate that the particle size of the perovskite nanocomposite is 25–60 nm, and for the sillenite phase nanocomposite it is 10–30 nm. The as-synthesized nanocomposites exhibit significantly enhanced saturation magnetization over pure BiFeO3 nanoparticles, with the sillenite Bi25FeO40-rGO nanocomposite having higher saturation magnetization than perovskite BiFeO3-rGO. The optical characteristics of the as-synthesized nanocomposites demonstrate considerably higher absorbance in the visible range with significantly lower band gap in comparison to undoped BiFeO3. Again, the sillenite Bi25FeO40-rGO nanocomposite is shown to have a lower band gap compared to the perovskite counterpart. Our investigation provides a means of selective phase formation as desired between sillenite Bi25FeO40-rGO and perovskite BiFeO3-rGO by controlling the hydrothermal reaction temperature. The outcome of our investigation suggests that the formation of nanocomposite of sillenite bismuth ferrite with reduced graphene oxide is promising to improve the magnetic and optical properties for potential technological applications.

1.
N. A.
Spaldin
and
M.
Fiebig
,
Science
309
,
391
(
2005
).
2.
G.
Catalan
and
J. F.
Scott
,
Adv. Mater.
21
,
2463
2485
(
2009
).
3.
J.
Wang
,
J.
Neaton
,
H.
Zheng
,
V.
Nagarajan
,
S.
Ogale
,
B.
Liu
,
D.
Viehland
,
V.
Vaithyanathan
,
D.
Schlom
, and
U.
Waghmare
,
Science
299
,
1719
(
2003
).
4.
F.
Gao
,
X.
Chen
,
K.
Yin
,
S.
Dong
,
Z.
Ren
,
F.
Yuan
,
T.
Yu
,
Z.
Zou
, and
J.
Liu
,
Adv. Mater.
19
,
2889
(
2007
).
5.
F.
Gao
,
X.
Chen
,
K.
Yin
,
S.
Dong
,
Z.
Ren
,
F.
Yuan
,
T.
Yu
,
Z.
Zou
, and
J.
Liu
,
Appl. Phy. Lett.
89
,
102506
(
2006
).
6.
C.
Rao
and
K.
Biswas
,
Annu. Rev. Anal. Chem.
2
,
435
(
2009
).
7.
T.
Gao
,
Z.
Chen
,
Q.
Huang
,
F.
Niu
,
X.
Huang
,
L.
Qin
, and
Y.
Huang
,
Rev. Adv. Mater. Sci.
40
,
97
(
2015
).
8.
L.
Ren
,
S. Y.
Lu
,
J. Z.
Fang
,
Y.
Wu
,
D. Z.
Chen
,
L. Y.
Huang
,
Y. F.
Chen
,
C.
Cheng
,
Y.
Liang
, and
Z. Q.
Fang
,
Catal. Today
281
,
656
(
2017
).
9.
A.
Zhu
,
Q.
Zhao
,
X.
Li
, and
Y.
Shi
,
ACS Appl. Mater. Interfaces
6
,
671
(
2014
).
10.
K. I.
Bolotin
,
K.
Sikes
,
Z.
Jiang
,
M.
Klima
,
G.
Fudenberg
,
J.
Hone
,
P.
Kim
, and
H.
Stormer
,
Solid State Commun.
146
,
351
(
2008
).
11.
A. A.
Balandin
,
S.
Ghosh
,
W.
Bao
,
I.
Calizo
,
D.
Teweldebrhan
,
F.
Miao
, and
C. N.
Lau
,
Nano Lett.
8
,
902
(
2008
).
12.
I.
Frank
,
D. M.
Tanenbaum
,
A.
Van der Zande
, and
P. L.
McEuen
,
J. Vac. Sci. Technol., B
25
,
2558
(
2007
).
13.
X.
Liu
,
L.
Pan
,
Q.
Zhao
,
T.
Lv
,
G.
Zhu
,
T.
Chen
,
T.
Lu
,
Z.
Sun
, and
C.
Sun
,
Chem. Eng. J.
183
,
238
(
2012
).
14.
P. V.
Kamat
,
J. Phys. Chem. Lett.
2
,
242
(
2011
).
15.
L.
Kavan
,
J. H.
Yum
, and
M.
Grtzel
,
ACS Nano
5
,
165
(
2011
).
16.
X.-F.
Zhang
and
Q.
Xi
,
Carbon
49
,
3842
(
2011
).
17.
H.
Fan
,
X.
Zhao
,
J.
Yang
,
X.
Shan
,
L.
Yang
,
Y.
Zhang
,
X.
Li
, and
M.
Gao
,
Catal. Commun.
29
,
29
(
2012
).
18.
Z.
Li
,
Y.
Shen
,
C.
Yang
,
Y.
Lei
,
Y.
Guan
,
Y.
Lin
,
D.
Liu
, and
C.-W.
Nan
,
J. Mater. Chem. A
1
,
823
(
2013
).
19.
Y.
Ren
,
F.
Nan
,
L.
You
,
Y.
Zhou
,
Y.
Wang
,
J.
Wang
,
X.
Su
,
M.
Shen
, and
L.
Fang
,
Small
13
,
16
(
2017
).
20.
J.
Dai
,
T.
Xian
,
L.
Di
, and
H.
Yang
,
J. Nanomater.
2013
,
Article ID 642897
.
21.
T.
Li
,
J.
Shen
,
N.
Li
, and
M.
Ye
,
Mater. Lett.
91
,
42
(
2013
).
22.
F.
Huang
,
Z.
Wang
,
X.
Lu
,
J.
Zhang
,
K.
Min
,
W.
Lin
,
R.
Ti
,
T.
Xu
,
J.
He
,
C.
Yue
, and
J.
Zhu
,
Sci. Rep.
3
,
2907
(
2013
).
23.
Y.
Wu
,
H.
Luo
,
X.
Jiang
,
H.
Wang
, and
J.
Geng
,
RSC Adv.
5
,
4905
(
2015
).
24.
X.
Wang
,
W.
Mao
,
Q.
Wang
,
Y.
Zhu
,
Y.
Min
,
J.
Zhang
,
T.
Yang
,
J.
Yang
,
X.
Li
, and
W.
Huang
,
RSC Adv.
7
,
10064
(
2017
).
25.
P.
Kumari
and
N.
Khare
,
Recent Trends Mater. Devices
178
,
139
143
(
2016
).
26.
A.
Sun
,
H.
Chen
,
C.
Song
,
F.
Jiang
,
X.
Wang
, and
Y.
Fu
,
RSC Adv.
3
,
4332
(
2013
).
27.
J.
Han
,
Y.
Huang
,
X.
Wu
,
C.
Wu
,
W.
Wei
,
B.
Peng
,
W.
Huang
, and
J. B.
Goodenough
,
Adv. Mater.
18
,
2145
(
2006
).
28.
C.
Chen
,
J.
Cheng
,
S.
Yu
,
L.
Che
, and
Z.
Meng
,
J. Cryst. Growth
291
,
135
(
2006
).
29.
S. N.
Alam
,
N.
Sharma
, and
L.
Kumar
,
Graphene
6
,
1
(
2017
).
30.
J.
Wei
,
C.
Zhang
, and
Z.
Xu
,
Mater. Res. Bull.
47
,
3513
(
2012
).
31.
A.
Ganguly
,
S.
Sharma
,
P.
Papakonstantinou
, and
J.
Hamilton
,
J. Phys. Chem. C
115
,
17009
(
2011
).
32.
H.-K.
Jeong
,
Y. P.
Lee
,
M. H.
Jin
,
E. S.
Kim
,
J. J.
Bae
, and
Y. H.
Lee
,
Chem. Phys. Lett.
470
,
255
(
2009
).
33.
J.
Shen
,
Y.
Hu
,
M.
Shi
,
X.
Lu
,
C.
Qin
,
C.
Li
, and
M.
Ye
,
Chem. Mater.
21
,
3514
(
2009
).
34.
X.
Li
,
A.
Staykov
, and
K.
Yoshizawa
,
J. Phys. Chem. C
114
,
9997
(
2010
).
35.
S.
Li
,
Y.
Lin
,
B.
Zhang
,
Y.
Wang
, and
C.
Nan
,
J. Phys. Chem. C
114
,
7
(
2010
).
36.
W.
Li
,
Y.
Bu
,
H.
Jin
,
J.
Wang
,
W.
Zhang
,
S.
Wang
, and
J.
Wang
,
Energy Fuels
27
,
6304
(
2013
).
37.
P.
Li
,
Q.
Chen
,
Y.
Lin
,
G.
Chang
, and
Y.
He
,
J. Alloys Compd.
672
,
497
(
2016
).
38.
M.
Basith
,
D.-T.
Ngo
,
A.
Quader
,
M.
Rahman
,
B.
Sinha
,
B.
Ahmmad
,
F.
Hirose
, and
K.
Mølhave
,
Nanoscale
6
,
14336
(
2014
).
39.
S. S.
Chowdhury
,
A. H. M.
Kamal
,
B.
Ahmmad
, and
M.
Basith
,
Ceram. Int.
43
,
174
(
2017
).
40.
P.
Li
,
L.
Li
,
M.
Xu
,
Q.
Chen
, and
Y.
He
,
Appl. Surf. Sci.
396
,
879
887
(
2017
).
41.
T.
Soltani
and
B.
Lee
,
Chem. Eng. J.
306
,
204
213
(
2016
).
42.
A.
Sun
,
C.
Song
,
F.
Jiang
, and
H.
Chen
,
International Conference on Materials for Renewable Energy and Environment
(
2013
), pp.
658
661
.
43.
J.
An
,
L.
Zhu
,
N.
Wang
,
Z.
Song
,
Z.
Yang
,
D.
Du
, and
H.
Tang
,
Chem. Eng. J.
219
,
225
(
2013
).
44.
V.
Kumar
and
S.
Singh
,
Appl. Surf. Sci.
386
,
78
(
2016
).
45.
M.
Darbandi
,
F.
Stromberg
,
J.
Landers
,
N.
Reckers
,
B.
Sanyal
,
W.
Keune
, and
H.
Wende
,
J. Phys. D: Appl. Phys.
45
,
195001
(
2012
).
46.
I.
Dzyaloshinskii
,
Sov. Phys.-JETP
66
,
848
(
1987
).
48.
Y.
Zhang
,
T.
Zuo
,
Y.
Cheng
, and
P. K.
Liaw
,
Sci. Rep.
3
,
1455
(
2013
).
49.
National Bureau of Standards–NISTIR 4583
,
Measurements for Competitiveness in Electronics
(
Electronics and Electrical Engineering Laboratory
,
1993
).
50.
P.
Kubelka
and
F.
Munk
,
Z. Tech. Phys.
12
,
593
(
1931
).
51.
B.
Guo
,
Y.
Guo
,
W.
Qin
,
H.
Liu
, and
D.
Zhang
,
Mater. Lett.
71
,
60
(
2012
).
52.
Z.
Li
,
Y.
Shen
,
Y.
Guan
,
Y.
Hu
,
Y.
Lin
, and
C.
Nan
,
J. Mater. Chem. A
2
,
1967
1973
(
2014
).
You do not currently have access to this content.