In this study, the mechanical properties of nanoporous gold (np-Au) coated with different ultrathin metallic materials (i.e., platinum and silver) are studied through molecular dynamics simulations. A new atomistic modelling technique, which is based on the Voronoi tessellation method providing periodic atomistic specimens, is used for the geometric representation of np-Au structure. Three different coating thickness values are used to examine the role of thickness on the coating performance under tensile loading at a constant strain rate. Several parameters, including Young's modulus, yield, and ultimate strengths, are utilized to compare the mechanical characteristics of coated and uncoated np-Au specimens. Moreover, adaptive common neighbor analyses are performed on the specimens for the purpose of understanding the deformation mechanisms of coated and uncoated nanoporous specimens comprehensively by monitoring the microstructural evolution of the crystal structure of the specimens within the deformation process. As a main finding from the simulations, it is observed that the mechanical properties of np-Au are improved by coating independently of the coating material type. However, enhancements on the yield and ultimate strengths maintained by platinum coating are greater than those provided by the silver coating.

1.
J.
Zhang
and
C. M.
Li
, “
Nanoporous metals: Fabrication strategies and advanced electrochemical applications in catalysis, sensing and energy systems
,”
Chem. Soc. Rev.
41
,
7016
(
2012
).
2.
J.
Biener
,
A.
Wittstock
,
L. A.
Zepeda-Ruiz
,
M. M.
Biener
,
V.
Zielasek
,
D.
Kramer
 et al., “
Surface-chemistry-driven actuation in nanoporous gold
,”
Nat. Mater.
8
,
47
51
(
2009
).
3.
X.
Lang
,
A.
Hirata
,
T.
Fujita
, and
M.
Chen
, “
Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors
,”
Nat. Nanotechnol.
6
,
232
236
(
2011
).
4.
Y.
Ding
,
M.
Chen
,
S.
Polarz
,
B.
Smarsly
,
G. W.
Huber
,
H. W.
Pickering
 et al., “
Nanoporous metals for catalytic and optical applications
,”
MRS Bull.
34
,
569
576
(
2009
).
5.
H.-J.
Jin
and
J.
Weissmüller
, “
Bulk nanoporous metal for actuation
,”
Adv. Eng. Mater.
12
,
714
723
(
2010
).
6.
J.
Jiao
and
N.
Huber
, “
Deformation mechanisms in nanoporous metals: Effect of ligament shape and disorder
,”
Comput. Mater. Sci.
127
,
194
203
(
2017
).
7.
L. H.
Qian
and
M. W.
Chen
, “
Ultrafine nanoporous gold by low-temperature dealloying and kinetics of nanopore formation
,”
Appl. Phys. Lett.
91
,
83105
(
2007
).
8.
Y.
Ding
,
M.
Chen
, and
J.
Erlebacher
, “
Metallic Mesoporous Nanocomposites for Electrocatalysis
,”
J. Am. Chem. Soc.
126
(
22
),
6876
6877
(
2004
).
9.
R.
Zeis
,
A.
Mathur
,
G.
Fritz
,
J.
Lee
, and
J.
Erlebacher
, “
Platinum-plated nanoporous gold: An efficient, low Pt loading electrocatalyst for PEM fuel cells
,”
J. Power Sources
165
,
65
72
(
2007
).
10.
A. M.
Hodge
,
R. T.
Doucette
,
M. M.
Biener
,
J.
Biener
,
O.
Cervantes
,
A. V.
Hamza
 et al., “
Ag effects on the elastic modulus values of nanoporous Au foams
,”
J. Mater. Res.
24
,
1600
1606
(
2009
).
11.
S.
Chan
,
S.
Kwon
,
T.-W.
Koo
,
L. P.
Lee
, and
A. A.
Berlin
, “
Surface-enhanced Raman scattering of small molecules from silver-coated silicon nanopores
,”
Adv. Mater.
15
,
1595
1598
(
2003
).
12.
M. A.
Haque
and
M. T. A.
Saif
, “
Deformation mechanisms in free-standing nanoscale thin films: A quantitative in situ transmission electron microscope study
,”
Proc. Natl. Acad. Sci. U.S.A.
101
,
6335
6340
(
2004
).
13.
L. Q.
Chen
and
J.
Shen
, “
Applications of semi-implicit Fourier-spectral method to phase field equations
,”
Comput. Phys. Commun.
108
,
147
158
(
1998
).
14.
J. W.
Cahn
and
J. E.
Hilliard
, “
Free energy of a nonuniform system. I. Interfacial free energy
,”
J. Chem. Phys.
28
,
258
(
1958
).
15.
M.
Kırca
,
A.
Gül
,
E.
Ekinci
,
F.
Yardım
, and
A.
Mugan
, “
Computational modeling of micro-cellular carbon foams
,”
Finite Elem Anal. Des.
44
,
45
52
(
2007
).
16.
Y. O.
Yildiz
and
M.
Kirca
, “
Atomistic simulation of Voronoi-based coated nanoporous metals
,”
Modelling Simul. Mater. Sci. Eng.
25
,
025008
(
2017
).
17.
H. F.
Zhan
,
Y. T.
Gu
, and
P. K. D. V.
Yarlagadda
, “
Advanced numerical characterization of mono-crystalline copper with defects
,”
Adv. Sci. Lett.
4
,
1293
1301
(
2011
).
18.
X.-Y.
Sun
,
G.-K.
Xu
,
X.
Li
,
X.-Q.
Feng
, and
H.
Gao
, “
Mechanical properties and scaling laws of nanoporous gold
,”
J. Appl. Phys.
113
,
23505
(
2013
).
19.
N.
Winter
,
M.
Becton
,
L.
Zhang
, and
X.
Wang
, “
Failure mechanisms and scaling laws of nanoporous aluminum: A computational study
,”
Adv. Eng. Mater.
18
,
632
642
(
2016
).
20.
A. C.
To
,
J.
Tao
,
M.
Kirca
, and
L.
Schalk
, “
Ligament and joint sizes govern softening in nanoporous aluminum
,”
Appl. Phys. Lett.
98
,
51903
(
2011
).
21.
A.
Giri
,
J.
Tao
,
L.
Wang
,
M.
Kirca
, and
A. C.
To
, “
Compressive Behavior and deformation mechanism of nanoporous open-cell foam with ultrathin ligaments
,”
J. Nanomech. Micromech.
4
,
A4013012
(
2014
).
22.
F.
Fritzen
,
T.
Böhlke
, and
E.
Schnack
, “
Periodic three-dimensional mesh generation for crystalline aggregates based on Voronoi tessellations
,”
Comput. Mech.
43
,
701
713
(
2009
).
23.
C. R.
Stoldt
and
V. M.
Bright
, “
Ultra-thin film encapsulation processes for micro-electro-mechanical devices and systems
,”
J. Phys. D: Appl. Phys.
39
,
R163
R170
(
2006
).
24.
T.
Ding
,
L.
Yao
,
C.
Liu
,
R.
Ciriminna
,
A.
Fidalgo
,
V.
Pandarus
 et al., “
Kinetically-controlled synthesis of ultra-small silica nanoparticles and ultra-thin coatings
,”
Nanoscale
8
,
4623
4627
(
2016
).
25.
D. A.
Crowson
,
D.
Farkas
, and
S. G.
Corcoran
, “
Mechanical stability of nanoporous metals with small ligament sizes
,”
Scr. Mater.
61
,
497
499
(
2009
).
26.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
,
1
19
(
1995
).
27.
See http://lammps.sandia.gov/ for
LAMMPS
(
2016
)
28.
X. W.
Zhou
,
R. A.
Johnson
, and
H. N. G.
Wadley
, “
Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers
,”
Phys. Rev. B
69
,
144113
(
2004
).
29.
A. P.
Thompson
,
S. J.
Plimpton
, and
W.
Mattson
, “
General formulation of pressure and stress tensor for arbitrary many-body interaction potentials under periodic boundary conditions
,”
J. Chem. Phys.
131
,
154107
(
2009
).
30.
A.
Stukowski
, “
Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool
,”
Model. Simul. Mater. Sci. Eng.
18
,
15012
(
2010
).
31.
A.
Stukowski
, “
Structure identification methods for atomistic simulations of crystalline materials
,”
Model. Simul. Mater. Sci. Eng.
20
,
45021
(
2012
).
32.
F.
Sansoz
, “
Atomistic processes controlling flow stress scaling during compression of nanoscale face-centered-cubic crystals
,”
Acta Mater.
59
,
3364
3372
(
2011
).
33.
T. J.
Balk
,
C.
Eberl
,
Y.
Sun
,
K. J.
Hemker
, and
D. S.
Gianola
, “
Tensile and compressive microspecimen testing of bulk nanoporous gold
,”
JOM
61
,
26
31
(
2009
).
34.
J.
Biener
,
A. M.
Hodge
,
A. V.
Hamza
,
L. M.
Hsiung
, and
J. H.
Satcher
, “
Nanoporous Au: A high yield strength material
,”
J. Appl. Phys.
97
,
24301
(
2005
).
35.
N. J.
Briot
,
T.
Kennerknecht
,
C.
Eberl
, and
T. J.
Balk
, “
Mechanical properties of bulk single crystalline nanoporous gold investigated by millimetre-scale tension and compression testing
,”
Philos. Mag.
94
,
847
866
(
2014
).
36.
D.
Lee
,
X.
Wei
,
X.
Chen
,
M.
Zhao
,
S. C.
Jun
,
J.
Hone
 et al., “
Microfabrication and mechanical properties of nanoporous gold at the nanoscale
,”
Scr. Mater.
56
,
437
440
(
2007
).
37.
N.
Badwe
,
X.
Chen
, and
K.
Sieradzki
, “
Mechanical properties of nanoporous gold in tension
,”
Acta Mater.
129
,
251
258
(
2017
).
38.
A.
Mathur
and
J.
Erlebacher
, “
Size dependence of effective Young's modulus of nanoporous gold
,”
Appl. Phys. Lett.
90
,
61910
(
2007
).
39.
M. R.
Gungor
and
D.
Maroudas
, “
Relaxation of biaxial tensile strain in ultrathin metallic films: Ductile void growth versus nanocrystalline domain formation
,”
Appl. Phys. Lett.
87
,
171913
(
2005
).
40.
F.
Aqra
and
A.
Ayyad
, “
Surface free energy of alkali and transition metal nanoparticles
,”
Appl. Surf. Sci.
314
,
308
313
(
2014
).
41.
See http://periodictable.com/ for the thermal expansion coefficients of Au, Ag, and Pt.
42.
K.
Kolluri
,
M. R.
Gungor
, and
D.
Maroudas
, “
Atomic-scale analysis of defect dynamics and strain relaxation mechanisms in biaxially strained ultrathin films of face-centered cubic metals
,”
J. Appl. Phys.
103
,
123517
(
2008
).
43.
T.-Y.
Kim
,
J. E.
Dolbow
, and
E.
Fried
, “
Numerical study of the grain-size dependent Young's modulus and Poisson's ratio of bulk nanocrystalline materials
,”
Int. J. Solids Struct.
49
,
3942
3952
(
2012
).
44.
S.
Parida
,
D.
Kramer
,
C. A.
Volkert
,
H.
Rösner
,
J.
Erlebacher
, and
J.
Weissmüller
, “
Volume change during the formation of nanoporous gold by dealloying
,”
Phys. Rev. Lett.
97
,
35504
(
2006
).
You do not currently have access to this content.