We performed comparative experimental investigation of superconducting NbN nanowires which were prepared by means of positive- and negative electron-beam lithography with the same positive tone Poly-methyl-methacrylate (PMMA) resist. We show that nanowires with a thickness 4.9 nm and widths less than 100 nm demonstrate at 4.2 K higher critical temperature and higher density of critical and retrapping currents when they are prepared by negative lithography. Also the ratio of the experimental critical current to the depairing critical current is larger for nanowires prepared by negative lithography. We associate the observed enhancement of superconducting properties with the difference in the degree of damage that nanowire edges sustain in the lithographic process. A whole range of advantages which is offered by the negative lithography with positive PMMA resist ensures high potential of this technology for improving the performance metrics of superconducting nanowire singe-photon detectors.

1.
G.
Gol'tsman
,
O.
Okunev
,
G.
Chulkova
,
A.
Lipatov
,
A.
Semenov
,
K.
Smirnov
,
B.
Voronov
,
A.
Dzardanov
,
C.
Williams
, and
R.
Sobolewski
,
Appl. Phys. Lett.
79
,
705
707
(
2001
).
2.
S. N.
Dorenbos
,
E. M.
Reiger
,
U.
Perinetti
,
V.
Zwiller
,
T.
Zijlstra
, and
T. M.
Klapwijk
,
Appl. Phys. Lett.
93
(
13
),
131101
(
2008
).
3.
F.
Marsili
,
V. B.
Verma
,
J. A.
Stern
,
S.
Harrington
,
A. E.
Lita
,
T.
Gerrits
,
I.
Vayshenker
,
B.
Baek
,
M. D.
Shaw
,
R. P.
Mirin
, and
S. W.
Nam
,
Nat. Photonics
7
,
210
214
(
2013
).
4.
S. N.
Dorenbos
,
P.
Forn-Diaz
,
T.
Fuse
,
A. H.
Verbruggen
,
T.
Zijlstra
,
T. M.
Klapwijk
, and
V.
Zwiller
,
Appl. Phys. Lett.
98
,
251102
(
2011
).
5.
V. B.
Verma
,
A. E.
Lita
,
M. R.
Vissers
,
F.
Marsili
,
D. P.
Pappas
,
R. P.
Mirin
, and
S. W.
Nam
,
Appl. Phys. Lett.
105
,
022602
(
2014
).
6.
Y.
Korneeva
,
M.
Mikhailov
,
Y.
Pershin
,
N.
Manova
,
A.
Divochiy
,
Y.
Vakhtomin
,
A.
Korneev
,
K.
Smirnov
,
A.
Sivakov
,
A.
Devizenko
, and
G.
Goltsman
,
Supercond. Sci. Technol.
27
,
095012
(
2014
).
7.
V.
Shcheslavskiy
,
P.
Morozov
,
A.
Divochiy
,
Y.
Vakhtomin
,
K.
Smirnov
, and
W.
Becker
,
Rev. Sci. Instrum.
87
,
053117
(
2016
).
8.
Y.
Korneeva
,
I.
Florya
,
A.
Semenov
,
A.
Korneev
, and
G.
Goltsman
,
IEEE Trans. Appl. Supercond.
21
,
323
(
2011
).
9.
M.
Hofherr
,
D.
Rall
,
K.
Ilin
,
M.
Siegel
,
A.
Semenov
,
H.-W.
Hübers
, and
N. A.
Gippius
,
J. Appl. Phys.
108
,
014507
(
2010
).
10.
R.
Lusche
,
A.
Semenov
,
K.
Ilin
,
M.
Siegel
,
Y.
Korneeva
,
A.
Trifonov
,
A.
Korneev
,
G.
Goltsman
,
D.
Vodolazov
, and
H.-W.
Huebers
,
J. Appl. Phys.
116
,
043906
(
2014
).
11.
J.
Yong
,
T.
Lemberger
,
L.
Benfatto
,
K.
Ilin
, and
M.
Siegel
,
Phys. Rev. B
87
,
184505
(
2013
).
12.
Y.
Noat
,
V.
Cherkez
,
C.
Brun
,
T.
Cren
,
C.
Carbillet
,
F.
Debontridder
,
K.
Ilin
,
M.
Siegel
,
A.
Semenov
,
H.-W.
Hübers
, and
D.
Roditchev
,
Phys. Rev B
88
,
014503
(
2013
).
13.
L.
You
,
X.
Yang
,
Y.
He
,
W.
Zhang
,
D.
Liu
,
W.
Zhang
,
L.
Zhang
,
L.
Zhang
,
X.
Liu
,
S.
Chen
,
Z.
Wang
, and
X.
Xie
,
AIP Adv.
3
,
072135
(
2013
).
14.
L.
Redaelli
,
V.
Zwiller
,
E.
Monroy
, and
J. M.
Gérard
,
Supercond. Sci. Technol.
30
,
035005
(
2017
).
15.
A.
Semenov
,
A.
Engel
,
H.-W.
Huebers
,
K.
Ilin
, and
M.
Siegel
,
Eur. Phys. J. B
47
,
495
501
(
2005
).
16.
D. Y.
Vodolazov
,
Phys. Rev. B
90
,
054515
(
2014
).
17.
J. R.
Clem
and
K. K.
Berggren
,
Phys. Rev. B
84
,
174510
(
2011
).
18.
H. L.
Hortensius
,
E. F. C.
Driessen
,
T. M.
Klapwijk
,
K. K.
Berggren
, and
J. R.
Clem
,
Appl. Phys. Lett.
100
,
182602
(
2012
).
19.
M. K.
Akhlaghi
,
H.
Atikian
,
A.
Eftekharian
,
M.
Loncar
, and
A. H.
Majedi
,
Opt. Express
20
,
23610
(
2012
).
20.
I.
Charaev
,
A.
Semenov
,
S.
Doerner
,
G.
Gomard
,
K.
Ilin
, and
M.
Siegel
,
Supercond. Sci. Technol.
30
,
025016
(
2017
).
21.
D.
Henrich
,
S.
Dörner
,
M.
Hofherr
,
K.
Il'in
,
A.
Semenov
,
E.
Heintze
,
M.
Scheffler
,
M.
Dressel
, and
M.
Siegel
,
J. Appl. Phys.
112
,
074511
(
2012
).
22.
H.
Duan
,
J.
Zhao
,
Y.
Zhang
,
E.
Xie
, and
L.
Han
,
Nanotechnology
20
,
135306
(
2009
).
23.
M. J.
Bowden
,
ACS Symp. Series
266
,
39
117
(
1984
).
24.
A.
Hoole
,
M.
Welland
, and
A.
Broers
,
Semicond. Sci. Technol.
12
,
1166
1170
(
1997
).
25.
I.
Zailer
,
J.
Frost
,
V.
Chabasseur-Molyneux
,
C.
Ford
, and
M.
Pepper
,
Semicond. Sci. Technol.
11
,
1235
1238
(
1996
).
26.
N. R.
Werthamer
,
E.
Helfand
, and
P. C.
Hohenberg
,
Phys. Rev.
147
,
295
(
1966
).
27.
U.
Pracht
,
E.
Heintze
,
C.
Clauss
,
D.
Hafner
,
R.
Bek
,
D.
Werner
,
S.
Gelhorn
,
M.
Scheffler
,
M.
Dressel
,
D.
Sherman
,
B.
Gorshunov
,
K.
Ilin
,
D.
Henrich
, and
M.
Siegel
,
IEEE Trans. Terahertz Sci. Technol.
3
,
269
(
2013
).
28.
M.
Hofherr
,
D.
Rall
,
K.
Il'in
,
A.
Semenov
,
H.-W.
Huebers
,
M.
Siegel
, and
J.
Low
,
Temp. Phys.
167
,
822
826
(
2012
).
29.
L. N.
Cooper
,
Phys. Rev. Lett.
6
,
689
(
1961
).
30.
M. Y.
Kupriyanov
and
V. F.
Lukichev
,
Fiz. Nizk. Temp.
6
,
445
(
1980
)
M. Y.
Kupriyanov
and
V. F.
Lukichev
, [
Sov. J. Low Temp. Phys.
6
,
210
(
1980
)].
31.
I.
Charaev
,
T.
Silbernagel
,
B.
Bachowsky
,
A.
Kuzmin
,
S.
Doerner
,
K.
Ilin
,
A.
Semenov
,
D.
Roditchev
,
D. Y.
Vodolazov
, and
M.
Siegel
, “
Proximity effect model of ultra-narrow NbN strips
,”
Phys. Rev. B
(submitted); preprint arXiv:1708.04883.
32.
M. D. G.
Steigerwald
,
R.
Arnold
,
J.
Bihr
,
V.
Drexel
,
H.
Jaksch
,
D.
Preikszas
, and
J. P.
Vermeulen
,
Microsc. Microanal.
10
(
S02
),
1372
1373
(
2004
).
You do not currently have access to this content.