Soil contamination with organic compounds can lead to the loss of farmable and habitable lands and cause long-term human and animal exposure to toxins. This paper reports a new laser based method for in situ soil decontamination at high efficiency, in which a focused excimer laser is used to remove organic contaminants from soil through burning by generating a local high temperature region. An aromatic compound, 1,1-dichloro-2,2-bis(4-chlorophenyl) ethylene, is used as an organic contaminant, and a porous silica plate is used as a soil simulant. A heat transfer model is created to simulate the interaction between the laser and the organic compound. The lithographic mode of operation allows the accurate quantitation of laser effects. The effects of power, speed, frequency, and energy consumption on the efficiency of decontamination have been examined with high accuracy. The decomposition area increases with the increase in the laser power and the decrease in the scan speed and frequency. Given the high energy conversion yield of the high power laser, this method would be promising for large scale in situ soil decontamination.

1.
K.
Wang
, “
Tolerance of cultivated plants to cadmium and their utilization in polluted farmland soils
,”
Eng. Life Sci.
22
(
1–2
),
189
198
(
2002
).
2.
F. I.
Khan
,
T.
Husain
, and
R.
Hejazi
, “
An overview and analysis of site remediation technologies
,”
J. Environ. Manage.
71
(
2
),
95
122
(
2004
).
3.
K.
Sato
,
K.
Fujimoto
,
W.
Dai
, and
M.
Hunger
, “
Molecular mechanism of heavily adhesive Cs: Why radioactive Cs is not decontaminated from soil
,”
J. Phys. Chem. C
117
(
27
),
14075
14080
(
2013
).
4.
W.
Ernst
, “
Bioavailability of heavy metals and decontamination of soils by plants
,”
Appl. Geochem.
11
(
1-2
),
163
167
(
1996
).
5.
S.
Deshpande
,
B.
Shiau
,
D.
Wade
,
D.
Sabatini
, and
J.
Harwell
, “
Surfactant selection for enhancing ex situ soil washing
,”
Water Res.
33
(
2
),
351
360
(
1999
).
6.
L. V.
Pavel
and
M.
Gavrilescu
, “
Overview of ex situ decontamination techniques for soil cleanup
,”
Environ. Eng. Manag. J.
7
,
815
834
(
2008
).
7.
A.
Baker
,
S.
McGrath
,
C.
Sidoli
, and
R.
Reeves
, “
The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants
,”
Resour., Conserv. Recycl.
11
(
1-4
),
41
49
(
1994
).
8.
C.
Gray
,
S.
Dunham
,
P.
Dennis
,
F.
Zhao
, and
S.
McGrath
, “
Field evaluation of in situ remediation of a heavy metal contaminated soil using lime and red-mud
,”
Environ. Pollut.
142
(
3
),
530
539
(
2006
).
9.
L. V.
Pavel
and
M.
Gavrilescu
, “
Overview of ex situ decontamination techniques for soil cleanup
,”
Environ. Eng. Manage. J.
7
,
815
834
(
2008
).
10.
D.
Hamby
, “
Site remediation techniques supporting environmental restoration activities—a review
,”
Sci. Total Environ.
191
(
3
),
203
224
(
1996
).
11.
T. L.
Gibson
,
A. S.
Abdul
,
W. A.
Glasson
,
C. C.
Ang
, and
D. W.
Gatlin
, “
Vapor extraction of volatile organic compounds from clay soil: A long-term field pilot study
,”
Ground Water
31
(
4
),
616
626
(
1993
).
12.
U.
Frank
and
N.
Barkley
, “
Remediation of low permeability subsurface formations by fracturing enhancement of soil vapor extraction
,”
J. Hazard. Mater.
40
(
2
),
191
201
(
1995
).
13.
K.
Jørgensen
,
J.
Puustinen
, and
A.-M.
Suortti
, “
Bioremediation of petroleum hydrocarbon-contaminated soil by composting in biopiles
,”
Environ. Pollut.
107
(
2
),
245
254
(
2000
).
14.
D. E.
Salt
,
M.
Blaylock
,
N. P.
Kumar
,
V.
Dushenkov
,
B. D.
Ensley
,
I.
Chet
, and
I.
Raskin
, “
Phytoremediation: A novel strategy for the removal of toxic metals from the environment using plants
,”
Nat. Biotechnol.
13
(
5
),
468
474
(
1995
).
15.
P.
Falciglia
,
M.
Giustra
, and
F.
Vagliasindi
, “
Low-temperature thermal desorption of diesel polluted soil: Influence of temperature and soil texture on contaminant removal kinetics
,”
J. Hazard. Mater.
185
(
1
),
392
400
(
2011
).
16.
Y.
Xiao
,
S. T.
Retterer
,
D. K.
Thomas
,
J.-Y.
Tao
, and
L.
He
, “
Impacts of surface morphology on ion desorption and ionization in desorption ionization on porous silicon (DIOS) mass spectrometry
,”
J. Phys. Chem. C
113
(
8
),
3076
3083
(
2009
).
17.
D.
Dermatas
and
X.
Meng
, “
Utilization of fly ash for stabilization/solidification of heavy metal contaminated soils
,”
Eng. Geol.
70
(
3
),
377
394
(
2003
).
18.
G.
Dermont
,
M.
Bergeron
,
G.
Mercier
, and
M.
Richer-Lafleche
, “
Soil washing for metal removal: A review of physical/chemical technologies and field applications
,”
J. Hazard. Mater.
152
(
1
),
1
31
(
2008
).
19.
W.
Chu
and
C.
Kwan
, “
Remediation of contaminated soil by a solvent/surfactant system
,”
Chemosphere
53
(
1
),
9
15
(
2003
).
20.
D.
Feng
,
L.
Lorenzen
,
C.
Aldrich
, and
P.
Mare
, “
Ex situ diesel contaminated soil washing with mechanical methods
,”
Miner. Eng.
14
(
9
),
1093
1100
(
2001
).
21.
A.
Singh
,
R. C.
Kuhad
, and
O. P.
Ward
, “
Biological remediation of soil: an overview of global market and available technologies
,” in
Advances in Applied Bioremediation
(
Springer
,
2009
), pp
1
19
.
22.
Y. B.
Acar
and
A. N.
Alshawabkeh
, “
Principles of electrokinetic remediation
,”
Environ. Sci. Technol.
27
(
13
),
2638
2647
(
1993
).
23.
S. C.
Tang
and
I. M.
Lo
, “
Magnetic nanoparticles: Essential factors for sustainable environmental applications
,”
Water Res.
47
(
8
),
2613
2632
(
2013
).
24.
M. E.
Povarnitsyn
,
T. E.
Itina
,
M.
Sentis
,
K.
Khishchenko
, and
P.
Levashov
, “
Material decomposition mechanisms in femtosecond laser interactions with metals
,”
Phys. Rev. B
75
(
23
),
235414
(
2007
).
25.
C.
Cheng
and
X.
Xu
, “
Mechanisms of decomposition of metal during femtosecond laser ablation
,”
Phys. Rev. B
72
(
16
),
165415
(
2005
).
26.
A.
Assion
,
T.
Baumert
,
M.
Bergt
,
T.
Brixner
,
B.
Kiefer
,
V.
Seyfried
,
M.
Strehle
, and
G.
Gerber
, “
Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses
,”
Science
282
(
5390
),
919
922
(
1998
).
27.
H. I.
Gomes
,
C.
Dias-Ferreira
, and
A. B.
Ribeiro
, “
Overview of in situ and ex situ remediation technologies for PCB-contaminated soils and sediments and obstacles for full-scale application
,”
Sci. Total Environ.
445
,
237
260
(
2013
).
28.
A.
Anthofer
,
P.
Kögler
,
C.
Friedrich
,
W.
Lippmann
, and
A.
Hurtado
, “
Laser decontamination and decomposition of PCB-containing paint
,”
Opt. Laser Technol.
87
,
31
42
(
2017
).
29.
S.
Agarwal
,
S. R.
Al-Abed
, and
D. D.
Dionysiou
,
In Situ Technologies for Reclamation of PCB-Contaminated Sediments: Current Challenges and Research Thrust Areas
(
American Society of Civil Engineers
,
2007
).
30.
S.
Agarwal
,
S. R.
Al-Abed
, and
D. D.
Dionysiou
, “
A feasibility study on Pd/Mg application in historically contaminated sediments and PCB spiked substrates
,”
J. Hazard. Mater.
172
(
2
),
1156
1162
(
2009
).
31.
T. K.
Sen
and
K. C.
Khilar
, “
Review on subsurface colloids and colloid-associated contaminant transport in saturated porous media
,”
Adv. Colloid Interface Sci.
119
(
2
),
71
96
(
2006
).
32.
A.
Ciani
,
K. U.
Goss
, and
R.
Schwarzenbach
, “
Light penetration in soil and particulate minerals
,”
Eur. J. Soil Sci.
56
(
5
),
561
574
(
2005
).
33.
V.
Lazic
,
R.
Barbini
,
F.
Colao
,
R.
Fantoni
, and
A.
Palucci
, “
Self-absorption model in quantitative laser induced breakdown spectroscopy measurements on soils and sediments
,”
Spectrochim. Acta B
56
(
6
),
807
820
(
2001
).
34.
P.
Delaporte
,
M.
Gastaud
,
W.
Marine
,
M.
Sentis
,
O.
Uteza
,
P.
Thouvenot
,
J.
Alcaraz
,
J.
Le Samedy
, and
D.
Blin
, “
Dry excimer laser cleaning applied to nuclear decontamination
,”
Appl. Surf. Sci.
208
,
298
305
(
2003
).
35.
J.
Foght
,
T.
April
,
K.
Biggar
, and
J.
Aislabie
, “
Bioremediation of DDT-contaminated soils: a review
,”
Biorem. J.
5
(
3
),
225
246
(
2001
).
36.
W. R.
Kelce
,
C. R.
Stone
,
S. C.
Laws
, and
L. E.
Gray
, “
Persistent DDT metabolite p, p′-DDE is a potent androgen receptor antagonist
,”
Nature
375
(
6532
),
581
(
1995
).
37.
S.
Hou
,
W.
Zheng
,
B.
Duong
, and
M.
Su
, “
All-optical decoder for rapid and noncontact readout of thermal barcodes
,”
J. Phys. Chem. C
120
(
38
),
22110
22114
(
2016
).
38.
P. S.
Sheng
and
V. S.
Joshi
, “
Analysis of heat-affected zone formation for laser cutting of stainless steel
,”
J. Mater. Process. Technol.
53
(
3-4
),
879
892
(
1995
).
39.
A.
Boller
,
Y.
Jin
, and
B.
Wunderlich
, “
Heat capacity measurement by modulated DSC at constant temperature
,”
J. Therm. Anal. Calorim.
42
(
2-3
),
307
330
(
1994
).
40.
S. M.
Marcus
and
R. L.
Blaine
, “
Thermal conductivity of polymers, glasses and ceramics by modulated DSC
,”
Thermochim. Acta.
243
(
2
),
231
239
(
1994
).
You do not currently have access to this content.