The mechanical performance of porous metal with assembly of pores mimicking typical crystalline structures is studied via atomistic simulation and finite element method. The pore lattices are made with the same orientation as the face-centered cubic (FCC) copper lattice. The compression is applied in the [0 0 1] direction. Under the same initial porosity and identical pore size, pores assembled in diamond array result in a superior stress response under compression. The sample with pores assembled in body-centered cubic array, whose surface-to-volume ratio is close to that of either FCC or hexagonally close-packed (HCP) array, has a yet much higher yield stress. However, the FCC- and HCP-structured nanoporous samples exhibit a greater hardening effect. The Lubarda model for critical stress to trigger dislocation emission is extended to the nanoporous geometry numerically. The magnitude and distribution of shear stress on the slip plane are found crucial to dislocation activities. No strong correlation between dislocation formation and early densification of nanoporous geometry is found. Through comparing the yielding and hardening behavior among differently structured nanoporous samples, new understanding could be established on their mechanical performance. Enhanced structural integrity could better support their diverse applications by design.

1.
Y.
Yamauchi
,
N.
Suzuki
,
L.
Radhakrishnan
, and
L.
Wang
,
Chem. Rec.
9
,
321
(
2009
).
2.
Y.
Qiao
and
C. M.
Li
,
J. Mater. Chem.
21
,
4027
(
2011
).
3.
J. H.
Bae
,
J.
Han
, and
T. D.
Chung
,
Phys. Chem. Chem. Phys.
14
,
448
(
2012
).
4.
X.
Lang
,
A.
Hirata
,
T.
Fujita
, and
M.
Chen
,
Nat. Nanotechnol.
6
,
232
(
2011
).
5.
X. T.
Zheng
and
C. M.
Li
,
Chem. Soc. Rev.
41
,
2061
(
2012
).
6.
J.
Biener
,
A. M.
Hodge
,
J. R.
Hayes
,
C. A.
Volkert
,
L. A.
Zepeda-Ruiz
,
A. V.
Hamza
, and
F. F.
Abraham
,
Nano Lett.
6
,
2379
(
2006
).
7.
E. M.
Bringa
,
J. D.
Monk
,
A.
Caro
,
A.
Misra
,
L.
Zepeda-Ruiz
,
M.
Duchaineau
,
F.
Abraham
,
M.
Nastas
,
S. T.
Picraux
,
Y. Q.
Wang
, and
D.
Farkas
,
Nano Lett.
12
,
3351
(
2012
).
8.
A. M.
Hodge
,
J.
Biener
,
J. R.
Hayes
,
P. M.
Bythrow
,
C. A.
Volkert
, and
A. V.
Hamza
,
Acta Mater.
55
,
1343
(
2007
).
9.
G.
Pia
and
F.
Delogu
,
Acta Mater.
99
,
29
(
2015
).
10.
C. J.
Ruestes
,
D.
Farkas
,
A.
Caro
, and
E. M.
Bringa
,
Acta Mater.
108
,
1
(
2016
).
11.
X.
Sun
,
G.
Xu
,
X.
Li
,
X.
Feng
, and
H.
Gao
,
J. Appl. Phys.
113
,
023505
(
2013
).
12.
D.
Farkas
,
A.
Caro
,
E.
Bringa
, and
D.
Crowson
,
Acta Mater.
61
,
3249
(
2013
).
13.
B.
Roschning
and
N.
Huber
,
J. Mech. Phys. Solids
92
,
55
(
2016
).
14.
K. R.
Mangipudi
,
E.
Epler
, and
C. A.
Volkert
,
Acta Mater.
119
,
115
(
2016
).
15.
J.
Zhang
and
C. M.
Li
,
Chem. Soc. Rev.
41
,
7016
(
2012
).
16.
A.
Kloke
,
F.
von Stetten
,
R.
Zengerle
, and
S.
Kerzenmacher
,
Adv. Mater.
23
,
4976
(
2011
).
17.
O. D.
Velev
,
P. M.
Tessier
,
A. M.
Lenhoff
, and
E. W.
Kaler
,
Nature
401
,
548
(
1999
).
18.
P. V.
Braun
and
P.
Wiltzius
,
Nature
402
,
603
(
1999
).
19.
Y.
Yamauchi
and
K.
Kuroda
,
Chem. Asian. J.
3
,
664
(
2008
).
20.
P.
Jiang
,
J.
Cizeron
,
J. F.
Bertone
, and
V. L.
Colvin
,
J. Am. Chem. Soc.
121
,
7957
(
1999
).
22.
A.
Stein
,
F.
Li
, and
N. R.
Denny
,
Chem. Mater.
20
,
649
(
2008
).
23.
M. C.
Rechtsman
,
F. H.
Stillinger
, and
S.
Torquato
,
Phys. Rev. E
74
,
021404
(
2006
).
24.
M.
Maldovan
and
E. L.
Thomas
,
Nat. Mater.
3
,
593
(
2004
).
25.
Z.
Zhang
,
A. S.
Keys
,
T.
Chen
, and
S. C.
Glotzer
,
Langmuir
21
,
11547
(
2005
).
26.
T. J.
Balk
,
C.
Eberl
,
Y.
Sun
,
K. J.
Hemker
, and
D. S.
Gianola
,
JOM
61
,
26
(
2009
).
27.
J.
Biener
,
A. M.
Hodge
,
A. V.
Hamza
,
L. M.
Hsiung
, and
J. H.
Satcher
, Jr.
,
J. Appl. Phys.
97
,
024301
(
2005
).
28.
R.
Dou
and
B.
Derby
,
Scr. Mater.
59
,
151
(
2008
).
29.
G.
Pia
and
F.
Delogu
,
Scr. Mater.
103
,
26
(
2015
).
30.
J. F.
Rodriguez-Nieva
,
C. J.
Ruestes
,
Y.
Tang
, and
E. M.
Bringa
,
Acta Mater.
80
,
67
(
2014
).
31.
C. J.
Ruestes
,
E. M.
Bringa
,
A.
Stukowski
,
J. F.
Rodríguez Nieva
,
G.
Bertolino
,
Y.
Tang
, and
M. A.
Meyers
,
Scr. Mater.
68
,
817
(
2013
).
32.
T.
Fujita
,
P.
Guan
,
K.
McKenna
,
X.
Lang
,
A.
Hirata
,
L.
Zhang
,
T.
Tokugaga
,
S.
Arai
,
Y.
Yamamoto
,
N.
Tanaka
,
Y.
Ishikawa
,
N.
Asao
,
Y.
Yamamoto
,
J.
Erlebacher
, and
M.
Chen
,
Nat. Mater.
11
,
775
(
2012
).
33.
B. D.
Ngô
,
A.
Stukowski
,
N.
Mameka
,
J.
Markmann
,
K.
Albe
, and
J.
Weissmüller
,
Acta Mater.
93
,
144
(
2015
).
34.
Y.
Mishin
,
M. J.
Mehl
,
D. A.
Papaconstantopoulos
,
A. F.
Voter
, and
J. D.
Kress
,
Phys. Rev. B
63
,
224106
(
2001
).
35.
Y.
Cui
and
Z.
Chen
,
Philos. Mag.
(in press).
36.
D. T.
Queheillalt
and
H. N. G.
Wadley
,
Acta Mater.
53
,
303
(
2005
).
37.
C.
Begau
,
J.
Hua
, and
A.
Hartmaier
,
J. Mech. Phys. Solids
60
,
711
(
2012
).
38.
V. A.
Lubarda
,
M. S.
Schneider
,
D. H.
Kalantar
,
B. A.
Remington
, and
M. A.
Meyers
,
Acta Mater.
52
,
1397
(
2004
).
39.
V. A.
Lubarda
,
Int. J. Plast.
27
,
181
(
2011
).
40.
E. M.
Bringa
,
S.
Traiviratana
, and
M. A.
Meyers
,
Acta Mater.
58
,
4458
(
2010
).
41.
Y.
Tang
,
E. M.
Bringa
, and
M. A.
Meyers
,
Acta Mater.
60
,
4856
(
2012
).
42.
Y.
Cui
and
Z.
Chen
,
Modell Simul. Mater. Sci. Eng.
23
,
085011
(
2015
).
43.
Y.
Cui
and
Z.
Chen
,
Comput. Mater. Sci.
108
(
Part A
),
103
(
2015
).
44.
Y.
Cui
and
Z.
Chen
,
Modell. Simul. Mater. Sci. Eng.
25
,
025007
(
2017
).
45.
T.
Mura
,
Micromechanics of Defects in Solids
(
Martinus Nijhoff Publishers
,
The Netherlands
,
1987
), pp.
23
and 47.
46.
W.
Cai
,
A.
Arsenlis
,
C. R.
Weinberger
, and
V. V.
Bulatov
,
J. Mech. Phys. Solids
54
,
561
(
2006
).
47.
48.
J. P.
Hirth
and
J.
Lothe
,
Theory of Dislocations
, 2nd ed. (
Krieger
,
Malabar, FL
,
1982
).
49.
D.
Esqué-de los Ojos
,
J.
Zhang
,
J.
Fornell
,
E.
Pellicer
, and
J.
Sort
,
Mech. Mater.
100
,
167
(
2016
).
50.
Y.
Cui
and
Z.
Chen
,
J. Appl. Phys.
119
,
225102
(
2016
).
51.
D.
Hull
and
D. J.
Bacon
,
Introduction to Dislocations
(
Butterworth-Heinemann
,
London
,
1984
).
52.
G. I.
Taylor
,
Proc. R. Soc. A: Math. Phys. Eng. Sci.
145
,
362
(
1934
).
53.
L. M.
Brown
,
Mater. Sci. Tech.
28
,
1209
(
2012
).
54.
M. A.
Meyers
and
K. K.
Chawla
,
Mechanical Behavior of Materials
(
Cambridge University Press
,
Cambridge
,
2009
).
55.
C.
Mi
,
D. A.
Buttry
,
P.
Sharma
, and
D. A.
Kouris
,
J. Mech. Phys. Solids
59
,
1858
(
2011
).
56.
S.
Traiviratana
,
E. M.
Bringa
,
D. J.
Benson
, and
M. A.
Meyers
,
Acta Mater.
56
,
3874
(
2008
).
57.
E. T.
Seppala
,
J.
Belak
, and
R. E.
Rudd
,
Phys. Rev. B
69
,
134101
(
2004
).
58.
M. A.
Bhatia
,
K. N.
Solanki
,
A.
Moitra
, and
M. A.
Tschopp
,
Metall. Mater. Trans. A
44
,
617
(
2013
).
You do not currently have access to this content.