Assuming that a dielectric sample can be described by Debye's model at each frequency, a method based on Cole's treatment is proposed for the direct estimation at experimental frequencies of relaxation times and the corresponding static and infinite-frequency permittivities. These quantities and the link between dielectric strength and mean molecular dipole moment at each frequency could be useful to analyze dielectric relaxation processes. The method is applied to samples that follow a Cole–Cole or a Cole–Davidson dielectric function. A physical interpretation of these dielectric functions is proposed. The behavior of relaxation time with frequency can be distinguished between the two dielectric functions. The proposed method can also be applied to samples following a Navriliak–Negami or any other dielectric function. The dielectric relaxation of a nanofluid consisting of graphene nanoparticles dispersed in the oil squalane is reported and discussed within the novel framework.

1.
P.
Debye
,
Polar Molecules
(
Dover Publications
,
New York
,
1929
).
2.
Broadband Dielectric Spectroscopy
, edited by
F.
Kremer
and
A.
Schönhals
(
Springer-Verlag
,
Berlin
,
2003
).
3.
C. G.
Garton
, “
The distribution of relaxation times in dielectrics
,”
Trans. Faraday Soc.
42
,
56
60
(
1946
).
4.
C. J. F.
Böttcher
and
P.
Bordewijk
,
Theory of Electric Polarization, Vol. II. Dielectrics in Time-Dependent Fields
, 2nd ed. (
Elsevier
,
Amsterdam
,
1978
).
5.
K. S.
Cole
and
R. H.
Cole
, “
Dispersion and absorption in dielectrics I. Alternating current characteristics
,”
J. Chem. Phys.
9
,
341
352
(
1941
).
6.
D. W.
Davidson
and
R. H.
Cole
, “
Dielectric relaxation in glycerol, propylene glycol and n-propanol
,”
J. Chem. Phys.
19
,
1484
1491
(
1951
).
7.
S.
Havriliak
and
S.
Negami
, “
A complex plane analysis of α-dispersions in some polymer systems
,”
J. Polym. Sci. C
14
,
99
117
(
1966
).
8.
C.
Grosse
, “
A program for the fitting of Debye, Cole–Cole, Cole–Davidson, and Havriliak–Negami dispersions to dielectric data
,”
J. Colloids Interface Sci.
419
,
102
106
(
2014
).
9.
A. A.
Lukichev
, “
Graphical method for the Debye-like relaxation spectra description
,”
J. Non-Cryst. Solids
358
,
447
453
(
2012
).
10.
H.
Schäfer
and
E.
Sternin
, “
Novel approach to the analysis of broadband dielectric spectra
,”
Phys. Rev. Lett.
76
,
2177
2180
(
1996
).
11.
A. Y.
Zasetsky
and
R.
Buchner
, “
Quasi-linear least squares and computer code for numerical evaluation of relaxation time distribution from broadband dielectric spectra
,”
J. Phys. Condens. Matter
23
,
025903
(
2011
).
12.
A. A.
Lukichev
, “
Relaxation function for the non-Debye relaxation spectra description
,”
Chem. Phys.
428
,
29
33
(
2014
).
13.
U.
Kaatze
, “
Measuring the dielectric properties of materials. Ninety-year development from low-frequency techniques to broadband spectroscopy and high-frequency imaging
,”
Meas. Sci. Technol.
24
,
012005
(
2013
).
14.
S.
Arrese-Igor
,
A.
Alegría
, and
J.
Colmenero
, “
On the non-exponentiality of the dielectric Debye-like relaxatiom of monoalcohols
,”
J. Chem. Phys.
146
,
114502
(
2017
).
15.
S.
Arrese-Igor
,
A.
Alegría
, and
J.
Colmenero
, “
Dielectric relaxation of 2-ethyl-1-hexanol around the glass transition by thermally stimulated depolarization currents
,”
J. Chem. Phys.
142
,
214504
(
2015
).
16.
R. H.
Cole
, “
On the analysis of dielectric relaxation measurements
,”
J. Chem. Phys.
25
,
493
499
(
1955
).
17.
R.
Richert
,
F.
Stickel
,
R. S.
Fee
, and
M.
Maroncelli
, “
Solvation dynamics and the dielectric response in a glass-forming solvent: From picoseconds to seconds
,”
Chem. Phys. Lett.
229
,
302
308
(
1994
).
18.
R.
Díaz-Calleja
, “
Comment on the maximum in the loss permittivity for the Havriliak–Negami equation
,”
Macromolecules
33
,
8924
8924
(
2000
).
19.
R.
Sadeghi
,
S. G.
Etemad
,
E.
Keshavarzi
, and
M.
Haghshenasfard
, “
Investigation of alumina nanofluid stability by UV–vis spectrum
,”
Microfluid. Nanofluid.
18
,
1023
1030
(
2015
).
20.
T. P.
Iglesias
,
M. A.
Rivas
,
R.
Iglesias
,
J. C. R.
Reis
, and
F.
Cohelho
, “
Electric permittivity and conductivity of nanofluids consisting of 15 nm particles of alumina in base Milli-Q and Milli-Ro water at different temperatures
,”
J. Chem. Thermodyn.
66
,
123
130
(
2013
).
You do not currently have access to this content.