This work seeks to understand how the topography of a surface can be engineered to control secondary electron emission (SEE) for multipactor suppression. Two unique, semi-empirical models for the secondary electron yield (SEY) of a micro-porous surface are derived and compared. The first model is based on a two-dimensional (2D) pore geometry. The second model is based on a three-dimensional (3D) pore geometry. The SEY of both models is shown to depend on two categories of surface parameters: chemistry and topography. An important parameter in these models is the probability of electron emissions to escape the surface pores. This probability is shown by both models to depend exclusively on the aspect ratio of the pore (the ratio of the pore height to the pore diameter). The increased accuracy of the 3D model (compared to the 2D model) results in lower electron escape probabilities with the greatest reductions occurring for aspect ratios less than two. In order to validate these models, a variety of micro-porous gold surfaces were designed and fabricated using photolithography and electroplating processes. The use of an additive metal-deposition process (instead of the more commonly used subtractive metal-etch process) provided geometrically ideal pores which were necessary to accurately assess the 2D and 3D models. Comparison of the experimentally measured SEY data with model predictions from both the 2D and 3D models illustrates the improved accuracy of the 3D model. For a micro-porous gold surface consisting of pores with aspect ratios of two and a 50% pore density, the 3D model predicts that the maximum total SEY will be one. This provides optimal engineered surface design objectives to pursue for multipactor suppression using gold surfaces.

1.
H.
Bruining
,
J. H.
de Boer
, and
W. G.
Burgers
,
Phys. IV
4
,
267
(
1937
).
2.
H.
Bruining
,
Philips Tech. Rev.
3
,
80
(
1938
).
3.
J. L. H.
Jonker
,
Philips Tech. Rev.
3
,
211
(
1938
).
4.
K. G.
McKay
, in
Advances in Electronics and Electron Physics
, edited by
L.
Marton
(
Academic Press Inc., Publishers
,
New York
,
1948
), Vol.
I
, pp.
65
120
.
5.
H.
Bruining
,
Physics and Applications of Secondary Electron Emission
(
McGraw-Hill Book Co., Inc
.,
New York
,
1954
).
6.
A. J.
Dekker
,
Solid State Phys.
6
,
251
311
(
1958
).
7.
D. H.
Preist
and
R. C.
Talcott
,
IRE Trans. Electron Devices
8
,
243
(
1961
).
8.
J. R. M.
Vaughan
,
IRE Trans. Electron Devices
8
,
302
(
1961
).
9.
R.
Hayes
and
D.
Preist
, in
Research on Microwave Window Multipactor and Its Inhibition
(
U.S. Army Electronics Laboratories
,
Fort Monmouth, New Jersey
,
1965
).
10.
Hughes Aircraft Company
,
The Study of Multipactor Breakdown in Space Electronic Systems
(
Hughes Aircraft Company
,
Culver City, CA
,
1966
).
11.
A. J.
Hatch
,
Nucl. Instrum. Methods
41
,
261
(
1966
).
12.
D. J.
Lewis
and
D. K.
McCarty
,
Proc. IEEE
54
,
713
(
1966
).
13.
J. E.
Stern
and
K. R.
Mercy
, in
Proceedings of the Second Workshop on Voltage Breakdown in Electronic Equipment at Low Air Pressures
, edited by
E. R.
Bunker
(
1969
), pp.
3
8
.
14.
G.
August
and
J. B.
Chown
, in
Proceedings of the Second Workshop on Voltage Breakdown in Electronic Equipment at Low Air Pressures
, edited by
J. E. R.
Bunker
(
Jet Propulsion Laboratory
,
Pasadena, CA
,
1969
), pp.
193
201
.
15.
H.
Jahrreiss
,
Thin Solid Films
12
,
187
(
1972
).
16.
C. M.
Lyneis
,
H. A.
Schwettman
, and
J. P.
Turneaure
,
Appl. Phys. Lett.
31
,
541
(
1977
).
17.
W. J.
Gallagher
,
IEEE Trans. Nucl. Sci.
26
,
4280
(
1979
).
18.
C. M.
Lyneis
,
J.
Sayag
,
H. A.
Schwettman
, and
J. P.
Turneaure
,
IEEE Trans. Nucl. Sci.
26
,
3755
(
1979
).
19.
P. J.
Tallerico
,
IEEE Trans. Nucl. Sci.
30
,
3420
(
1983
).
20.
R.
Boni
,
V.
Chimenti
,
P.
Fernandes
,
R.
Parodi
,
B.
Spataro
, and
F.
Tazzioli
,
IEEE Trans. Nucl. Sci.
32
,
2815
(
1985
).
21.
S. R.
Farrell
and
W. J.
Gallagher
,
IEEE Trans. Nucl. Sci.
32
,
2900
(
1985
).
22.
A. R.
Nyaiesh
,
E. L.
Garwin
,
F. K.
King
, and
R. E.
Kirby
,
Properties of Thin Anti-Multipactor Coatings for Klystron Windows
(
Stanford Linear Accelerator Center
,
Stanford, CA
,
1985
).
23.
W.
Weingarten
,
IEEE Trans. Electr. Insul.
24
,
1005
(
1989
).
24.
W. R.
Fowkes
,
R. S.
Callin
, and
A. E.
Vlieks
, in
Linear Accelerator Conferences
(
Stanford Linear Accelerator Center
,
Stanford, California
,
1992
).
25.
F.
Le Pimpec
,
R. E.
Kirby
,
F.
King
, and
M.
Pivi
,
J. Vac. Sci. Technol., A
23
,
1610
(
2005
).
26.
M.
Kuchnir
and
E.
Hahn
,
Coating Power RF Components with TiN
(
Fermi National Accelerator Laboratory
,
Bativa, IL
,
1995
).
27.
D.
Proch
,
D.
Einfeld
,
R.
Onken
, and
N.
Steinhauser
, in
Proceedings of the 1995 Particle Accelerator Conferences
(
1995
), pp.
1776
1778
.
28.
J.
Tuckmantel
,
C.
Benvenuti
,
D.
Bloess
,
D.
Boussard
,
G.
Geschonke
,
E.
Haebel
,
N.
Hilleret
,
S.
Juras
,
H. P.
Kindermann
,
J.
Uythoven
,
C.
Wyss
, and
M.
Stirbet
, in
Proceedings of the 1995 Particle Accelerator Conferences
(
IEEE
,
Dallas, TX
,
1995
), pp.
1642
1644
.
29.
N.
Díaz
,
S.
Castañeda
,
J. M.
Ripalda
,
I.
Montero
,
L.
Galán
,
S.
Feltham
,
D.
Raboso
, and
F.
Rueda
, in
6th Spacecraft Charging Technology Conference
(
2000
), pp.
205
209
.
30.
J.
Lorkiewicz
,
A.
Brinkmann
,
B.
Dwersteg
,
D.
Kostin
,
W.-D.
Moeller
, and
M.
Layalan
, in
Proceedings of the 10th Workshop on RF Superconductivity: SRF 2001
(
High Energy Accelerator Research Organization
,
2003
), pp.
448
452
.
31.
S.
Michizono
,
Y.
Saito
,
Suharyanto
,
Y.
Yamano
, and
S.
Kobayashi
,
Appl. Surf. Sci.
235
,
227
(
2004
).
32.
G. G.
Fuentes
,
R. J.
Rodríguez
,
M.
García
,
L.
Galán
,
I.
Montero
, and
J. L.
de Segovia
,
Appl. Surf. Sci.
253
,
7627
(
2007
).
33.
I.
Montero
,
S. H.
Mohamed
,
M.
García
,
L.
Galán
, and
D.
Raboso
,
J. Appl. Phys.
101
,
113306
(
2007
).
34.
A.
Ruiz
,
E.
Román
,
P.
Lozano
,
M.
García
,
L.
Galán
,
I.
Montero
, and
D.
Raboso
,
Vacuum
81
,
1493
(
2007
).
35.
Suharyanto
,
S.
Michizono
,
Y.
Saito
,
Y.
Yamano
, and
S.
Kobayashi
,
Vacuum
81
,
799
(
2007
).
36.
N.
Balcon
,
D.
Payan
,
M.
Belhaj
,
T.
Tondu
, and
V.
Inguimbert
,
IEEE Trans. Plasma Sci.
40
,
282
(
2012
).
37.
M.
Ye
,
Y. N.
He
,
S. G.
Hu
,
J.
Yang
,
R.
Wang
,
T. C.
Hu
,
W. B.
Peng
, and
W. Z.
Cui
,
J. Appl. Phys.
114
,
104905
(
2013
).
38.
M.
Ye
,
Y. N.
He
,
S. G.
Hu
,
R.
Wang
,
T. C.
Hu
,
J.
Yang
, and
W. Z.
Cui
,
J. Appl. Phys.
113
,
074904
(
2013
).
39.
V.
Nistor
,
L. A.
González
,
L.
Aguilera
,
I.
Montero
,
L.
Galán
,
U.
Wochner
, and
D.
Raboso
,
Appl. Surf. Sci.
315
,
445
453
(
2014
).
40.
R.
Valizadeh
,
O. B.
Malyshev
,
S.
Wang
,
S. A.
Zolotovskaya
,
W. A.
Gillespie
, and
A.
Abdolvand
,
Appl. Phys. Lett.
105
,
231605
(
2014
).
41.
L.
Cai
,
J.
Wang
,
G.
Cheng
,
X.
Zhu
, and
H.
Xia
,
J. Appl. Phys.
117
,
53302
(
2015
).
42.
R.
Valizadeh
,
O. B.
Malyshev
,
S.
Wang
,
T.
Sian
,
M. D.
Cropper
, and
N.
Sykes
,
Appl. Surf. Sci.
404
,
370
(
2017
).
43.
S.
Riyopoulos
,
D.
Chernin
, and
D.
Dialetis
,
Phys. Plasmas
2
,
3194
(
1995
).
44.
Y.
Li
,
W.-Z.
Cui
,
N.
Zhang
,
X.-B.
Wang
,
H.-G.
Wang
,
Y.-D.
Li
, and
J.-F.
Zhang
,
Chin. Phys. B
23
,
48402
(
2014
).
45.
M.
Buyanova
,
V. E.
Semenov
,
D.
Anderson
,
M.
Lisak
, and
J.
Puech
,
Phys. Plasmas
17
,
043504
(
2010
).
46.
O.
Hachenberg
and
W.
Brauer
, in
Advances in Electronics and Electron Physics
(
Academic Press
,
New York
,
1959
), Vol. XI, pp.
413
499
.
47.
D. C.
Joy
,
A Database Electron-Solid Interactions
(
2008
), available at http://studylib.net/doc/5878300/a-database-of.
48.
J. M.
Sattler
,
R. A. J.
Coutu
,
R. A.
Lake
, and
T.
Laurvick
, in
IEEE National Aerospace and Electronics Conference and Ohio Innovation Summit
(
Institute of Electrical and Electronics Engineers (IEEE)
,
Dayton
,
2016
), pp.
296
302
.
49.
J. M.
Sattler
,
R. A. J.
Coutu
,
R. A.
Lake
, and
T.
Laurvick
, in
9th International Workshop on Multipactor, Corona Passive Intermodulation
(
Noordwijk
,
2017
).
50.
N. D.
Zameroski
,
P.
Kumar
,
C.
Watts
,
T.
Svimonishvili
,
M.
Gilmore
,
E.
Schamiloglu
, and
J. A.
Gaudet
,
IEEE Trans. Plasma Sci.
34
,
642
(
2006
).
You do not currently have access to this content.