Highly ordered self-assembled monolayers (SAMs) can be considered as functional building blocks for molecular electronics. Aromatic SAMs can be converted into a highly stable monolayer, i.e., carbon nanomembranes, via electron irradiation induced cross-linking. Here, we report the electronic transport characteristics of the pristine SAM of 4′-nitro-1,1′-biphenyl-4-thiol (NBPT) and the amino-terminated cross-linked monolayer prepared on Au/mica and Au/Si substrates with the use of a conductive probe atomic force microscope (CP-AFM) and a eutectic Ga–In (EGaIn) top electrode. The amino-terminated cross-linking monolayer exhibits a lower friction compared to the non-crosslinked SAM, as electron irradiation leads to the enhancement of both molecular rigidity and hydrophilicity. The electron irradiation effect on junction conductance was also directly observed by CP-AFM. Quantitative measurements and statistical analysis were performed by applying current–voltage spectroscopy in CP-AFM and EGaIn methods. Both methods demonstrate that the cross-linking of a NBPT–SAM leads to a decrease of conductance by more than one order of magnitude, which is attributed to a partial loss of aromaticity of the SAM as well as a partial decoupling of molecules from the Au substrate. Transition voltages were found to be significantly reduced for the cross-linked monolayer. The surface roughness effect on the transport characteristics has been addressed based on a comparison between two junction platforms.

1.
M.
Frei
,
S. V.
Aradhya
,
M.
Koentopp
,
M. S.
Hybertsen
, and
L.
Venkataraman
,
Nano Lett.
11
,
1518
(
2011
).
2.
D. R.
Ward
,
N. J.
Halas
,
J. W.
Ciszek
,
J. M.
Tour
,
Y.
Wu
,
P.
Nordlander
, and
D.
Natelson
,
Nano Lett.
8
,
919
(
2008
).
3.
P.
Reddy
,
S. Y.
Jang
,
R. A.
Segalman
, and
A.
Majumdar
,
Science
315
,
1568
(
2007
).
4.
C.
Iacovita
,
M. V.
Rastei
,
B. W.
Heinrich
,
T.
Brumme
,
J.
Kortus
,
L.
Limot
, and
J. P.
Bucher
,
Phys. Rev. Lett.
101
,
116602
(
2008
).
5.
R.
Vincent
,
S.
Klyatskaya
,
M.
Ruben
,
W.
Wernsdorfer
, and
F.
Balestro
,
Nature
488
,
357
(
2012
).
6.
S. V.
Aradhya
and
L.
Venkataraman
,
Nat. Nanotechnol.
8
,
399
(
2013
).
7.
H. B.
Akkerman
,
P. W. M.
Blom
,
D. M.
de Leeuw
, and
B.
de Boer
,
Nature
441
,
69
(
2006
).
8.
H. B.
Akkerman
and
B.
de Boer
,
J. Phys.: Condens. Matter
20
,
013001
(
2008
).
9.
R. L.
McCreery
and
A. J.
Bergren
,
Adv. Mater.
21
,
4303
(
2009
).
10.
S. A.
DiBenedetto
,
A.
Facchetti
,
M. A.
Ratner
, and
T. J.
Marks
,
Adv. Mater.
21
,
1407
(
2009
).
11.
C. M.
Jager
,
T.
Schmaltz
,
M.
Novak
,
A.
Khassanov
,
A.
Vorobiev
,
M.
Hennemann
,
A.
Krause
,
H.
Dietrich
,
D.
Zahn
,
A.
Hirsch
,
M.
Halik
, and
T.
Clark
,
J. Am. Chem. Soc.
135
,
4893
(
2013
).
12.
Y. X.
Zhang
,
Z. Y.
Zhao
,
D.
Fracasso
, and
R. C.
Chiechi
,
Israel J. Chem.
54
,
513
(
2014
).
13.
D.
Xiang
,
X. L.
Wang
,
C. C.
Jia
,
T.
Lee
, and
X. F.
Guo
,
Chem. Rev.
116
,
4318
(
2016
).
14.
C.
Zhou
,
M. R.
Deshpande
,
M. A.
Reed
,
L.
Jones
, and
J. M.
Tour
,
Appl. Phys. Lett.
71
,
611
(
1997
).
15.
J.
Chen
,
M. A.
Reed
,
A. M.
Rawlett
, and
J. M.
Tour
,
Science
286
,
1550
(
1999
).
16.
A.
Vilan
,
A.
Shanzer
, and
D.
Cahen
,
Nature
404
,
166
(
2000
).
17.
M. L.
Chabinyc
,
X. X.
Chen
,
R. E.
Holmlin
,
H.
Jacobs
,
H.
Skulason
,
C. D.
Frisbie
,
V.
Mujica
,
M. A.
Ratner
,
M. A.
Rampi
, and
G. M.
Whitesides
,
J. Am. Chem. Soc.
124
,
11730
(
2002
).
18.
R. C.
Chiechi
,
E. A.
Weiss
,
M. D.
Dickey
, and
G. M.
Whitesides
,
Angew. Chem. - Int. Ed.
47
,
142
(
2008
).
19.
L.
Cademartiri
,
M. M.
Thuo
,
C. A.
Nijhuis
,
W. F.
Reus
,
S.
Tricard
,
J. R.
Barber
,
R. N. S.
Sodhi
,
P.
Brodersen
,
C.
Kim
,
R. C.
Chiechi
, and
G. M.
Whitesides
,
J. Phys. Chem. C
116
,
10848
(
2012
).
20.
C. A.
Nijhuis
,
W. F.
Reus
,
J. R.
Barber
,
M. D.
Dickey
, and
G. M.
Whitesides
,
Nano Lett.
10
,
3611
(
2010
).
21.
H. B.
Akkerman
,
R. C. G.
Naber
,
B.
Jongbloed
,
P. A.
van Hal
,
P. W. M.
Blom
,
D. M.
de Leeuw
, and
B.
de Boer
,
Proc. Natl. Acad. Sci. U.S.A.
104
,
11161
(
2007
).
22.
G.
Wang
,
Y.
Kim
,
M.
Choe
,
T. W.
Kim
, and
T.
Lee
,
Adv. Mater.
23
,
755
(
2011
).
23.
Y. L.
Loo
,
D. V.
Lang
,
J. A.
Rogers
, and
J. W. P.
Hsu
,
Nano Lett.
3
,
913
(
2003
).
24.
D. J.
Wold
and
C. D.
Frisbie
,
J. Am. Chem. Soc.
123
,
5549
(
2001
).
25.
V. B.
Engelkes
,
J. M.
Beebe
, and
C. D.
Frisbie
,
J. Phys. Chem. B
109
,
16801
(
2005
).
26.
A. R.
Tan
,
J.
Balachandran
,
B. D.
Dunietz
,
S. Y.
Jang
,
V.
Gavini
, and
P.
Reddy
,
Appl. Phys. Lett.
101
,
243107
(
2012
).
27.
B.
Kim
,
J. M.
Beebe
,
Y.
Jun
,
X. Y.
Zhu
, and
C. D.
Frisbie
,
J. Am. Chem. Soc.
128
,
4970
(
2006
).
28.
B.
Kim
,
S. H.
Choi
,
X. Y.
Zhu
, and
C. D.
Frisbie
,
J. Am. Chem. Soc.
133
,
19864
(
2011
).
29.
Z. T.
Xie
,
I.
Baldea
,
C. E.
Smith
,
Y. F.
Wu
, and
C. D.
Frisbie
,
ACS Nano
9
,
8022
(
2015
).
30.
O. E. C.
Ocampo
,
P.
Gordiichuk
,
S.
Catarci
,
D. A.
Gautier
,
A.
Herrmann
, and
R. C.
Chiechi
,
J. Am. Chem. Soc.
137
,
8419
(
2015
).
31.
A.
Turchanin
,
A.
Beyer
,
C. T.
Nottbohm
,
X. H.
Zhang
,
R.
Stosch
,
A.
Sologubenko
,
J.
Mayer
,
P.
Hinze
,
T.
Weimann
, and
A.
Gölzhäuser
,
Adv. Mater.
21
,
1233
(
2009
).
32.
A.
Turchanin
and
A.
Gölzhäuser
,
Prog. Surf. Sci.
87
,
108
(
2012
).
33.
A.
Turchanin
and
A.
Gölzhäuser
,
Adv. Mater.
28
,
6075
(
2016
).
34.
P.
Angelova
,
H.
Vieker
,
N. E.
Weber
,
D.
Matei
,
O.
Reimer
,
I.
Meier
,
S.
Kurasch
,
J.
Biskupek
,
D.
Lorbach
,
K.
Wunderlich
,
L.
Chen
,
A.
Terfort
,
M.
Klapper
,
K.
Müllen
,
U.
Kaiser
,
A.
Gölzhäuser
, and
A.
Turchanin
,
ACS Nano
7
,
6489
(
2013
).
35.
X. H.
Zhang
,
A.
Beyer
, and
A.
Gölzhäuser
,
Beilstein J. Nanotechnol.
2
,
826
(
2011
).
36.
X. H.
Zhang
,
C.
Neumann
,
P.
Angelova
,
A.
Beyer
, and
A.
Gölzhäuser
,
Langmuir
30
,
8221
(
2014
).
37.
Z. K.
Zheng
,
X. H.
Zhang
,
C.
Neumann
,
D.
Emmrich
,
A.
Winter
,
H.
Vieker
,
W.
Liu
,
M.
Lensen
,
A.
Gölzhäuser
, and
A.
Turchanin
,
Nanoscale
7
,
13393
(
2015
).
38.
M.
Ai
,
S.
Shishatskiy
,
J.
Wind
,
X. H.
Zhang
,
C. T.
Nottbohm
,
N.
Mellech
,
A.
Winter
,
H.
Vieker
,
J.
Qiu
,
K. J.
Dietz
,
A.
Gölzhäuser
, and
A.
Beyer
,
Adv. Mater.
26
,
3421
(
2014
).
39.
N.
Meyerbroeker
,
P.
Waske
, and
M.
Zharnikov
,
J. Chem. Phys.
142
,
101919
(
2015
).
40.
X.
Zhang
,
R.
Waitz
,
F.
Yang
,
C.
Lutz
,
P.
Angelova
,
A.
Gölzhäuser
, and
E.
Scheer
,
Appl. Phys. Lett.
106
,
063107
(
2015
).
41.
A.
Turchanin
,
D.
Kafer
,
M.
El-Desawy
,
C.
Woll
,
G.
Witte
, and
A.
Gölzhäuser
,
Langmuir
25
,
7342
(
2009
).
42.
L.
Amiaud
,
J.
Houplin
,
M.
Bourdier
,
V.
Humblot
,
R.
Azria
,
C. M.
Pradier
, and
A.
Lafosse
,
Phys. Chem. Chem. Phys.
16
,
1050
(
2014
).
43.
J.
Houplin
,
C.
Dablemont
,
L.
Sala
,
A.
Lafosse
, and
L.
Amiaud
,
Langmuir
31
,
13528
(
2015
).
44.
X. H.
Zhang
,
H.
Vieker
,
A.
Beyer
, and
A.
Gölzhäuser
,
Beilstein J. Nanotechnol.
5
,
188
(
2014
).
45.
A.
Mrugalla
and
J.
Schnack
,
Beilstein J. Nanotechnol.
5
,
865
(
2014
).
46.
P.
Penner
,
X.
Zhang
,
E.
Marschewski
,
F.
Behler
,
P.
Angelova
,
A.
Beyer
,
J.
Christoffers
, and
A.
Gölzhäuser
,
J. Phys. Chem. C
118
,
21687
(
2014
).
47.
V. M.
Muller
,
B. V.
Derjaguin
, and
Y. P.
Toporov
,
Colloids Surf.
7
,
251
(
1983
).
48.
V. B.
Engelkes
and
C. D.
Frisbie
,
J. Phys. Chem. B
110
,
10011
(
2006
).
49.
F. C.
Simeone
,
H. J.
Yoon
,
M. M.
Thuo
,
J. R.
Barber
,
B.
Smith
, and
G. M.
Whitesides
,
J. Am. Chem. Soc.
135
,
18131
(
2013
).
50.
F. J.
McCarthy
,
M.
Buck
, and
G.
Hähner
,
J. Phys. Chem. C
112
,
19465
(
2008
).
51.
Y.
Yang
,
J.
Singh
, and
M.
Ruths
,
RSC Adv.
4
,
18801
(
2014
).
52.
G. J.
Leggett
,
Anal. Chim. Acta
479
,
17
(
2003
).
53.
B.
Bhushan
and
H. W.
Liu
,
Phys. Rev. B
63
,
245412
(
2001
).
54.
H.
Liu
and
B.
Bhushan
,
Ultramicroscopy
91
,
185
(
2002
).
55.
W.
Hild
,
A.
Opitz
,
J. A.
Schaefer
, and
M.
Scherge
,
Wear
254
,
871
(
2003
).
56.
Z.
Pawlak
,
W.
Urbaniak
, and
A.
Oloyede
,
Wear
271
,
1745
(
2011
).
57.
W.
Eck
,
V.
Stadler
,
W.
Geyer
,
M.
Zharnikov
,
A.
Gölzhäuser
, and
M.
Grunze
,
Adv. Mater.
12
,
805
(
2000
).
58.
D. G.
Matei
,
N. E.
Weber
,
S.
Kurasch
,
S.
Wundrack
,
M.
Woszczyna
,
M.
Grothe
,
T.
Weimann
,
F.
Ahlers
,
R.
Stosch
,
U.
Kaiser
, and
A.
Turchanin
,
Adv. Mater.
25
,
4146
(
2013
).
59.
U.
Hasse
,
K.
Fricke
,
D.
Dias
,
G.
Sievers
,
H.
Wulff
, and
F.
Scholz
,
J. Solid State Electrochem.
16
,
2383
(
2012
).
60.
H. J.
Yoon
,
N. D.
Shapiro
,
K. M.
Park
,
M. M.
Thuo
,
S.
Soh
, and
G. M.
Whitesides
,
Angew. Chem. - Int. Ed.
51
,
4658
(
2012
).
61.
H. J.
Yoon
,
C. M.
Bowers
,
M.
Baghbanzadeh
, and
G. M.
Whitesides
,
J. Am. Chem. Soc.
136
,
16
(
2014
).
62.
M.
Carlotti
,
M.
Degen
,
Y. X.
Zhang
, and
R. C.
Chiechi
,
J. Phys. Chem. C
120
,
20437
(
2016
).
63.
J. M.
Beebe
,
B.
Kim
,
J. W.
Gadzuk
,
C. D.
Frisbie
, and
J. G.
Kushmerick
,
Phys. Rev. Lett.
97
,
026801
(
2006
).
64.
E. H.
Huisman
,
C. M.
Guedon
,
B. J.
van Wees
, and
S. J.
van der Molen
,
Nano Lett.
9
,
3909
(
2009
).
65.
J. Z.
Chen
,
T.
Markussen
, and
K. S.
Thygesen
,
Phys. Rev. B
82
,
121412
(
2010
).
66.
A.
Vilan
,
D.
Cahen
, and
E.
Kraisler
,
ACS Nano
7
,
695
(
2013
).

Supplementary Material

You do not currently have access to this content.