The energy efficiency and power of a quantum three-terminal thermoelectric device are studied by considering elastic tunneling through a quantum dot. Facilitated by the three-terminal geometry, the device can generate electrical powers in two channels simultaneously, even when only one heat current is exploited. The electrical power in these two channels can add up constructively or destructively, depending on their signs. The constructive cooperation leads to enhanced thermoelectric power and efficiency for various quantum-dot energies, tunneling rates, etc. Moreover, this cooperative enhancement, dubbed as the thermoelectric cooperative effect, is found to be universal in three-terminal thermoelectric energy harvest.

1.
T. C.
Harman
and
J. M.
Honig
,
Thermoelectric and Thermomagnetic Effects and Applications
(
McGraw-Hill
,
New York
,
1967
).
2.
U.
Sivan
and
Y.
Imry
,
Phys. Rev. B
33
,
551
(
1986
).
3.
L. D.
Hicks
and
M. S.
Dresselhaus
,
Phys. Rev. B
47
,
12727
(
1993
);
L. D.
Hicks
and
M. S.
Dresselhaus
,
Phys. Rev. B
47
,
16631
(
1993
).
4.
T. E.
Humphrey
and
H.
Linke
,
Phys. Rev. Lett.
94
,
096601
(
2005
).
5.
H. J.
Goldsmid
,
Introduction to Thermoelectricity
(
Springer
,
2010
).
6.
R.
Venkatasubramanian
,
Phys. Rev. B
61
,
3091
(
2000
).
7.
N.
Nakpathomkun
,
H. Q.
Xu
, and
H.
Linke
,
Phys. Rev. B
82
,
235428
(
2010
).
8.
F.
Giazotto
,
T. T.
Heikkilä
,
A.
Luukanen
,
A. M.
Savin
, and
J. P.
Pekola
,
Rev. Mod. Phys.
78
,
217
(
2006
).
9.
G.
Benenti
,
G.
Casati
,
T.
Prosen
, and
K.
Saito
, e-print arXiv:1311.4430.
10.
G.
Mahan
and
J.
Sofo
,
Proc. Natl. Acad. Sci. U.S.A.
93
,
7436
(
1996
).
11.
J.
Zhou
,
R.
Yang
,
G.
Chen
, and
M. S.
Dresselhaus
,
Phys. Rev. Lett.
107
,
226601
(
2011
).
12.
J.-K.
Yu
,
S.
Mitrovic
,
D.
Tham
,
J.
Varghese
, and
J. R.
Heath
,
Nat. Nanotechnol.
5
,
718
(
2010
).
13.
Y.
Xia
,
P.
Yang
,
Y.
Sun
,
Y.
Wu
,
B.
Mayers
,
B.
Gates
,
Y.
Yin
,
F.
Kim
, and
H.
Yan
,
Adv. Mater.
15
,
353
(
2003
).
14.
C. J.
Vineis
,
A.
Shakouri
,
A.
Majumdar
, and
M. G.
Kanatzidis
,
Adv. Mater.
22
,
3970
(
2010
).
15.
A. I.
Boukai
,
Y.
Bunimovich
,
J.
Tahir-Kheli
,
J. K.
Yu
,
W. A.
Goddard
 III
, and
J. R.
Heath
,
Nature
451
,
168
(
2008
).
16.
J. H.
Jiang
and
Y.
Imry
,
C. R. Phys.
17
,
1047
(
2016
).
17.
O.
Entin-Wohlman
,
Y.
Imry
, and
A.
Aharony
,
Phys. Rev. B
82
,
115314 345
(
2010
).
18.
R.
Sánchez
and
M.
Büttiker
,
Phys. Rev. B
83
,
085428
(
2011
).
19.
K.
Saito
,
G.
Benenti
,
G.
Casati
, and
T.
Prosen
,
Phys. Rev. B
84
,
201306
(
2011
).
20.
D.
Sánchez
and
L.
Serra
,
Phys. Rev. B
84
,
201307
(
2011
).
21.
J. H.
Jiang
,
O.
Entin-Wohlman
, and
Y.
Imry
,
Phys. Rev. B
85
,
075412
(
2012
);
J. H.
Jiang
,
O.
Entin-Wohlman
, and
Y.
Imry
,
Phys. Rev. B
87
,
205420
(
2013
).
22.
T.
Ruokola
and
T.
Ojanen
,
Phys. Rev. B
86
,
035454
(
2012
).
23.
J. H.
Jiang
,
O.
Entin-Wohlman
, and
Y.
Imry
,
New J. Phys.
15
,
075021
(
2013
).
24.
Y.
Imry
,
O.
Entin-Wohlman
, and
J. H.
Jiang
, WO Patent 2,013,035,100 (14 March
2013
).
25.
A. N.
Jordan
,
B.
Sothmann
,
R.
Sánchez
, and
M.
Büttiker
,
Phys. Rev. B
87
,
075312
(
2013
).
26.
J. H.
Jiang
,
J. Appl. Phys.
116
,
194303
(
2014
).
27.
J. H.
Jiang
,
B. K.
Agarwalla
, and
D.
Segal
,
Phys. Rev. Lett.
115
,
040601
(
2015
).
28.
K.
Yamamoto
,
O.
Entin-Wohlman
,
A.
Aharony
, and
N.
Hatano
,
Phys. Rev. B
94
,
121402
(
2016
).
29.
L.
Li
and
J. H.
Jiang
,
Sci. Rep.
6
,
31974
(
2016
).
30.
J. H.
Jiang
,
M.
Kulkarni
,
D.
Segal
, and
Y.
Imry
,
Phys. Rev. B
92
,
045309
(
2015
).
31.
Y.
Zhang
,
G.
Lin
, and
J.
Chen
,
Phys. Rev. E
91
,
052118
(
2015
).
32.
Y.
Zhang
,
Y.
Wang
,
C.
Huang
,
G.
Lin
, and
J.
Chen
,
Energy
95
,
593
(
2016
).
33.
H.
Su
,
Z. C.
Shi
, and
J. Z.
He
,
Chin. Phys. Lett.
32
,
100501
(
2015
).
34.
B. K.
Agarwalla
,
J. H.
Jiang
, and
D.
Segal
,
Phys. Rev. B
92
,
245418
(
2015
).
35.
H.
Thierschmann
,
R.
Sánchez
,
B.
Sothmann
,
F.
Arnold
,
C.
Heyn
,
W.
Hansen
,
H.
Buhmann
, and
L. W.
Molenkamp
,
Nat. Nanotechnol.
10
,
854
(
2015
).
36.
B.
Roche
,
P.
Roulleau
,
T.
Jullien
,
Y.
Jompol
,
I.
Farrer
,
D. A.
Ritchie
, and
D. C.
Glattli
,
Nat. Commun.
6
,
6738
(
2015
).
37.
F.
Hartmann
,
P.
Pfeffer
,
S.
Höfling
,
M.
Kamp
, and
L.
Worschech
,
Phys. Rev. Lett.
114
,
146805
(
2015
).
38.
R.
Bosisio
,
C.
Gorini
,
G.
Fleury
, and
J. L.
Pichard
,
Phys. Rev. Appl.
3
,
054002
(
2015
).
39.
J. H.
Jiang
and
Y.
Imry
,
Phys. Rev. Appl.
7
,
064001
(
2017
).
40.
X. B.
Zhang
,
T.
Taliercio
,
S.
Kalliakos
, and
P.
Lefebvre
,
J. Phys.: Condens. Matter
13
,
7053
(
2001
).
41.
O.
Entin-Wohlman
,
Y.
Imry
, and
A.
Aharony
,
Phys. Rev. B
91
,
054302
(
2015
).
42.
F.
Mazza
,
R.
Bosisio
,
G.
Benenti
,
V.
Giovannetti
,
R.
Fazio
, and
F.
Taddei
,
New J. Phys.
16
,
085001
(
2014
).
43.
J. H.
Jiang
,
Phys. Rev. E
90
,
042126
(
2014
).
44.
F.
Zhuo
,
Z. Z.
Sun
, and
J. H.
Jiang
, e-print arXiv:1602.01285.
45.
M.
Buttiker
,
IBM J. Res. Dev.
32
,
63
(
1988
).
You do not currently have access to this content.