An efficient two dimensional T-A formulation based approach is proposed to calculate the electromagnetic characteristics of tape stacks and coils made of second generation high temperature superconductors. In the approach, a thin strip approximation of the superconductor is used in which the superconducting layer is modeled as a 1-dimensional domain. The formulation is mainly based on the calculation of the current vector potential T in the superconductor layer and the calculation of the magnetic vector potential A in the whole space, which are coupled together in the model. Compared with previous T-based models, the proposed model is innovative in terms of magnetic vector potential A solving, which is achieved by using the differential method, instead of the integral method. To validate the T-A formulation model, it is used to simulate racetrack coils made of second generation high temperature superconducting (2G HTS) tape, and the results are compared with the experimentally obtained data on the AC loss. The results show that the T-A formulation is accurate and efficient in calculating 2G HTS coils, including magnetic field distribution, current density distribution, and AC loss. Finally, the proposed model is used for simulating a 2000 turn coil to demonstrate its effectiveness and efficiency in simulating large-scale 2G HTS coils.

1.
J. G.
Bednorz
and
K. A.
Müller
,
Z. Phys. B: Condens. Matter
64
(
2
),
189
193
(
1986
).
2.
M.
Noe
and
M.
Steurer
,
Supercond. Sci. Technol.
20
(
3
),
R15
(
2007
).
3.
S. S.
Kalsi
,
Applications of High Temperature Superconductors to Electric Power Equipment
(
John Wiley & Sons
,
2011
).
4.
Y.
Iwasa
,
J.
Bascunan
,
S.
Hahn
,
M.
Tomita
, and
W.
Yao
,
IEEE Trans. Appl. Supercond.
20
(
3
),
718
721
(
2010
).
5.
G.
Apollinari
,
S.
Prestemon
, and
A. V.
Zlobin
,
Annu. Rev. Nucl. Part. Sci.
65
,
355
377
(
2015
).
6.
W.
Norris
,
J. Phys. D: Appl. Phys.
3
(
4
),
489
(
1970
).
7.
E. H.
Brandt
and
M.
Indenbom
,
Phys. Rev. B
48
(
17
),
12893
(
1993
).
8.
J. R.
Clem
,
J.
Claassen
, and
Y.
Mawatari
,
Supercond. Sci. Technol.
20
(
12
),
1130
(
2007
).
9.
W.
Yuan
,
A.
Campbell
, and
T.
Coombs
,
Supercond. Sci. Technol.
22
(
7
),
075028
(
2009
).
10.
W.
Yuan
,
A.
Campbell
, and
T.
Coombs
,
J. Appl. Phys.
107
(
9
),
093909
(
2010
).
11.
W.
Yuan
,
A.
Campbell
,
Z.
Hong
,
M.
Ainslie
, and
T.
Coombs
,
Supercond. Sci. Technol.
23
(
8
),
085011
(
2010
).
12.
L.
Prigozhin
and
V.
Sokolovsky
,
Supercond. Sci. Technol.
24
(
7
),
075012
(
2011
).
13.
E.
Pardo
,
Supercond. Sci. Technol.
26
(
10
),
105017
(
2013
).
14.
E.
Pardo
,
Supercond. Sci. Technol.
21
(
6
),
065014
(
2008
).
15.
E.
Pardo
,
J.
Šouc
, and
J.
Kováč
,
Supercond. Sci. Technol.
25
(
3
),
035003
(
2012
).
16.
A.
Stenvall
and
T.
Tarhasaari
,
Supercond. Sci. Technol.
23
(
12
),
125013
(
2010
).
17.
F.
Gömöry
,
M.
Vojenčiak
,
E.
Pardo
, and
J.
Šouc
,
Supercond. Sci. Technol.
22
(
3
),
034017
(
2009
).
18.
N.
Amemiya
,
S-i.
Murasawa
,
N.
Banno
, and
K.
Miyamoto
,
Physica C
310
(
1
),
16
29
(
1998
).
19.
N.
Enomoto
and
N.
Amemiya
,
Physica C
412–414
,
1050
1055
(
2004
).
20.
Z.
Hong
,
A.
Campbell
, and
T.
Coombs
,
Supercond. Sci. Technol.
19
(
12
),
1246
(
2006
).
21.
R.
Brambilla
,
F.
Grilli
, and
L.
Martini
,
Supercond. Sci. Technol.
20
(
1
),
16
(
2007
).
22.
F.
Liang
,
W.
Yuan
,
M.
Zhang
,
Z.
Zhang
,
J.
Li
,
S.
Venuturumilli
, and
J.
Patel
,
Supercond. Sci. Technol.
29
(
11
),
115006
(
2016
).
23.
F.
Liang
,
W.
Yuan
,
C. A.
Baldan
,
M.
Zhang
, and
J. S.
Lamas
,
J. Supercond. Novel Magn.
28
(
9
),
2669
2681
(
2015
).
24.
Y.
Wang
,
H.
Song
,
W.
Yuan
,
Z.
Jin
, and
Z.
Hong
,
J. Appl. Phys.
121
(
11
),
113903
(
2017
).
25.
H.
Tsuboi
and
K.
Kunisue
,
IEEE Trans. Magn.
27
(
5
),
4020
4023
(
1991
).
26.
S.
Salon
,
B.
Mathewson
, and
S.
Uda
,
IEEE Trans. Magn.
19
(
6
),
2405
2408
(
1983
).
27.
Y.
Ichiki
and
H.
Ohsaki
,
Physica C
412–414
,
1015
1020
(
2004
).
28.
Y.
Ichiki
and
H.
Ohsaki
,
IEEE Trans. Appl. Supercond.
15
(
2
),
2851
2854
(
2005
).
29.
S.
Sugita
and
H.
Ohsaki
,
Physica C
392–396
,
1150
1155
(
2003
).
30.
N.
Amemiya
,
S.
Sato
, and
T.
Ito
,
J. Appl. Phys.
100
(
12
),
123907
(
2006
).
31.
K.
Takeuchi
,
N.
Amemiya
,
T.
Nakamura
,
O.
Maruyama
, and
T.
Ohkuma
,
Supercond. Sci. Technol.
24
(
8
),
085014
(
2011
).
32.
N.
Amemiya
,
T.
Tsukamoto
,
M.
Nii
,
T.
Komeda
,
T.
Nakamura
, and
Z.
Jiang
,
Supercond. Sci. Technol.
27
(
3
),
035007
(
2014
).
33.
N.
Amemiya
,
Y.
Sogabe
,
M.
Sakashita
,
Y.
Iwata
,
K.
Noda
,
T.
Ogitsu
,
Y.
Ishii
, and
T.
Kurusu
,
Supercond. Sci. Technol.
29
(
2
),
024006
(
2016
).
34.
Z.
Hong
,
Q.
Jiang
,
R.
Pei
,
A.
Campbell
, and
T.
Coombs
,
Supercond. Sci. Technol.
20
(
4
),
331
(
2007
).
35.
H.
Zhang
,
M.
Zhang
, and
W.
Yuan
,
Supercond. Sci. Technol.
30
(
2
),
024005
(
2017
).
36.
M.
Zhang
,
W.
Wang
,
Z.
Huang
,
M.
Baghdadi
,
W.
Yuan
,
J.
Kvitkovic
,
S.
Pamidi
, and
T.
Coombs
,
IEEE Trans. Appl. Supercond.
24
(
3
),
4700704
(
2014
).
37.
M.
Zhang
,
W.
Yuan
,
J.
Kvitkovic
, and
S.
Pamidi
,
Supercond. Sci. Technol.
28
(
11
),
115011
(
2015
).
38.
M.
Zhang
,
M.
Chudy
,
W.
Wang
,
Y.
Chen
,
Z.
Huang
,
Z.
Zhong
,
W.
Yuan
,
J.
Kvitkovic
,
S.
Pamidi
, and
T.
Coombs
,
IEEE Trans. Appl. Superconduct.
23
(
3
),
5900604
(
2013
).
39.
Z.
Jiang
,
K.
Thakur
,
M.
Staines
,
R.
Badcock
,
N.
Long
,
R.
Buckley
,
A.
Caplin
, and
N.
Amemiya
,
Supercond. Sci. Technol.
24
(
6
),
065005
(
2011
).
40.
V. M.
Zermeno
,
A. B.
Abrahamsen
,
N.
Mijatovic
,
B. B.
Jensen
, and
M. P.
Sørensen
,
J. Appl. Phys.
114
(
17
),
173901
(
2013
).
41.
V. M.
Zermeño
and
F.
Grilli
,
Supercond. Sci. Technol.
27
(
4
),
044025
(
2014
).
42.
L.
Quéval
,
V. M.
Zermeño
, and
F.
Grilli
,
Supercond. Sci. Technol.
29
(
2
),
024007
(
2016
).
You do not currently have access to this content.