A high-density plasma in a pin-to-pin configuration was sustained in liquid organosilicon precursors (hexamethyldisiloxane, tetraethyl orthosilicate, and tetramethylcyclotetrasiloxane) by the application of a high-voltage at a frequency of 1 kHz and a duty cycle of 30%. For all organosilicon precursors investigated, the current-voltage characteristics revealed a spark mode, with typical discharge duration of about 50 ns. Both the number of microdischarges and the total amount of charges per microdischarge increased with the amplitude of the applied voltage. The optical emission spectroscopy revealed strong emission from the C2 Swan system along with H I, Si I, and O I emission lines, indicating very high fragmentation levels of the organosilicon precursors upon discharge ignition. This was confirmed by Transmission Electron Microscopy and Energy-Dispersive X-ray spectroscopy indicating the formation of amorphous silicon oxycarbide nanoparticles. However, W I emission lines as well as W crystalline nanoparticles could also be seen; a feature ascribed to plasma-electrode interactions.

1.
J.
Gubkin
, “
Elektrolytische Metallabscheidung an der freien Oberfläche einer Salzlösung
,”
Ann. Phys.
268
(9),
114
(
1887
).
2.
S.
Samukawa
,
M.
Hori
,
S.
Rauf
,
K.
Tachibana
,
P.
Bruggeman
,
G.
Kroesen
,
J. C.
Whitehead
,
A. B.
Murphy
,
A. F.
Gutsol
,
S.
Starikovskaia
,
U.
Kortshagen
,
J.-P. P.
Boeuf
,
T. J.
Sommerer
,
M. J.
Kushner
,
U.
Czarnetzki
,
N.
Mason
, and
A. F.
Gutso
, “
The 2012 plasma roadmap
,”
J. Phys. D Appl. Phys.
45
,
253001
(
2012
).
3.
P.
Bruggeman
and
C.
Leys
, “
Non-thermal plasmas in and in contact with liquids
,”
J. Phys. D Appl. Phys.
42
,
53001
(
2009
).
4.
N.
Sano
,
H.
Wang
,
M.
Chhowalla
,
I.
Alexandrou
, and
G. A.
Amaratunga
, “
Synthesis of carbon onions in water
,”
Nature
414
,
506
507
(
2001
).
5.
B.
Surowsky
,
O.
Schlüter
, and
D.
Knorr
, “
Interactions of non-thermal atmospheric pressure plasma with solid and liquid food systems: A review
,”
Food Eng. Rev.
7
,
82
108
(
2015
).
6.
P.
Šunka
, “
Pulse electrical discharges in water and their applications
,”
Phys. Plasmas
8
,
2587
(
2001
).
7.
B. R.
Locke
,
M.
Sato
,
P.
Sunka
,
M. R.
Hoffmann
, and
J.-S.
Chang
, “
Electrohydraulic discharge and nonthermal plasma for water treatment
,”
Ind. Eng. Chem. Res.
45
,
882
905
(
2006
).
8.
D.
Mariotti
and
R. M.
Sankaran
, “
Microplasmas for nanomaterials synthesis
,”
J. Phys. D Appl. Phys.
43
,
323001
(
2010
).
9.
D.
Mariotti
,
J.
Patel
,
V.
Švrček
, and
P.
Maguire
, “
Plasma-liquid interactions at atmospheric pressure for nanomaterials synthesis and surface engineering
,”
Plasma Processes Polym.
9
,
1074
1085
(
2012
).
10.
J.
Senthilnathan
,
C.-C.
Weng
,
J.-D.
Liao
, and
M.
Yoshimura
, “
Submerged liquid plasma for the synthesis of unconventional nitrogen polymers
,”
Sci. Rep.
3
,
2414
(
2013
).
11.
G.
Saito
and
T.
Akiyama
, “
Nanomaterial synthesis using plasma generation in liquid
,”
J. Nanomater.
2015
,
123696
.
12.
Q.
Chen
,
Q.
Chen
,
J.
Li
, and
Y.
Li
, “
A review of plasma–liquid interactions for nanomaterial synthesis A review of plasma–liquid interactions for nanomaterial synthesis
,”
J. Phys. D Appl. Phys.
48
,
424005
(
2015
).
13.
T.
Belmonte
,
A.
Hamdan
,
F.
Kosior
,
C.
Noël
, and
G.
Henrion
, “
Interaction of discharges with electrode surfaces in dielectric liquids: Application to nanoparticle synthesis
,”
J. Phys. D Appl. Phys.
47
,
224016
(
2014
).
14.
A.
Hamdan
,
C.
Noël
,
J.
Ghanbaja
, and
T.
Belmonte
, “
Comparison of aluminium nanostructures created by discharges in various dielectric liquids
,”
Plasma Chem. Plasma Process.
34
,
1101
1114
(
2014
).
15.
C.
Richmonds
and
R. M.
Sankaran
, “
Plasma-liquid electrochemistry: Rapid synthesis of colloidal metal nanoparticles by microplasma reduction of aqueous cations
,”
Appl. Phys. Lett.
93
,
131501
(
2008
).
16.
F.-C.
Chang
,
C.
Richmonds
, and
R. M.
Sankaran
, “
Microplasma-assisted growth of colloidal Ag nanoparticles for point-of-use surface-enhanced Raman scattering applications
,”
J. Vac. Sci. Technol. A Vac. Surf. Film
28
,
L5
(
2010
).
17.
A.
Kilicaslan
,
O.
Levasseur
,
V.
Roy-Garofano
,
J.
Profili
,
M.
Moisan
,
C.
Côté
,
A.
Sarkissian
, and
L.
Stafford
, “
Optical emission spectroscopy of microwave-plasmas at atmospheric pressure applied to the growth of organosilicon and organotitanium nanopowders
,”
J. Appl. Phys.
115
,
113301
(
2014
).
18.
O.
Levasseur
,
J.
Profili
,
R. K.
Gangwar
,
N.
Naudé
,
R.
Clergereaux
,
N.
Gherardi
, and
L.
Stafford
, “
Experimental and modelling study of organization phenomena in dielectric barrier discharges with structurally inhomogeneous wood substrates
,”
Plasma Sources Sci. Technol.
23
,
54006
(
2014
).
19.
L.
Stafford
,
R. K.
Gangwar
, and
A.
Durocher-Jean
, “
Diagnostics of microwave plasmas at atmospheric pressure applied to the growth of organosilicon nanopowders
,” in
32nd ICPIG Conference
,
2015
.
20.
R. K.
Gangwar
,
A.
Hamdan
, and
L.
Stafford
, “
Fast production of organosilicon nanoparticles by plasma-induced decomposition of hexamethyldisiloxane liquid
,” in
22nd ISPC Conference
,
July 2015
.
21.
E.
Skladnik-sadowska
,
K.
Czaus
,
K.
Malinowski
,
M. J.
Sadowski
,
K.
Nowakowska-langier
,
M. S.
Ladygina
, and
I. E.
Garkusha
, “
Optical emission spectroscopy of plasma produced from tungsten target irradiated within RPI-IBIS facility
,”
Nukleonika
57
,
193
196
(
2012
).
22.
M. A.
Gigosos
and
V.
Cardeñoso
, “
New plasma diagnosis tables of hydrogen Stark broadening including ion dynamics
,”
J. Phys. B At. Mol. Opt. Phys.
29
,
4795
4838
(
1996
).
23.
A.
Hamdan
and
M. S.
Cha
, “
Ignition modes of nanosecond discharge with bubbles in distilled water
,”
J. Phys. D Appl. Phys.
48
,
405206
(
2015
).
24.
R. P.
Cardoso
,
T.
Belmonte
,
l. C.
Noë
,
F.
Kosior
, and
G.
Henrion
, “
Filamentation in argon microwave plasma at atmospheric pressure
,”
J. Appl. Phys.
105
,
93306
(
2009
).
You do not currently have access to this content.