High quality lattice matched III-V semiconductor material, boron gallium phosphide (B2.8%Ga)P and boron gallium arsenide phosphide (BGa)(AsP), layers were deposited on exact oriented (001) 300 mm silicon (Si) substrates by metal organic chemical vapor deposition. An industrial Aixtron Crius R (CCS close coupled showerhead) 300 mm system was used. The material compositions were varied systematically to keep the lattice match to the silicon substrate on one hand, but to change the optical properties and thereby investigate the relationship between the refractive index and different material compositions on the other hand. By in situ measurements, the reflectance was measured during growth, and the refractive index for the wavelength of λ = 950 nm was determined. The results are compared and confirmed with the measurement results of Rogowsky et al. [J. Appl. Phys. 109, 053504 (2011)] which had been achieved by ellipsometry and show a linear dependence in relation to the arsenide and boron content. The refractive index of B2.8%GaP is found to be 3.14, and therefore is larger than the refractive index of GaP of 3.13. This confirms former investigations which lead to the conclusion that the direct band gap of B2.8%GaP is smaller than the direct band gap of GaP. The refractive index of B6.2%GaAs15%P is found to be 3.20, which is a change of 2.3% in comparison to GaP. Based on the measurement results of the direct band gap of BGaP samples with a boron content of up to 6% by surface photo voltage, the direct band gaps of the (BGa)(AsP) samples were calculated and related to the refractive index values. As a result, a change of 2% in the refractive index relates to a reduction of 400 meV in the direct band gap of (BGa)(AsP).

1.
G. E.
Moore
, “
Cramming more components on integrated circuits
,”
Electronics
38
(
8
),
114
(
1965
)
G. E.
Moore
, [reprinted in
IEEE Solid-State Circuits Society Newsletter
11
,
33
(
2006
)].
2.
F.
Steinecke
,
Being Really Virtual
(
Springer
,
2016
), p.
127
.
3.
S.
Lourdudoss
, “
Heteroepitaxy and selective area heteroepitaxy for silicon photonics
,”
Curr. Opin. Solid State Mater. Sci.
16
(
2
),
91
(
2012
).
4.
R.
Stevenson
, “
III-Vs and the silicon roadmap
,”
Compd. Semicond.
18
(
4
),
26
(
2012
).
5.
See www.semiconductors.org for International Technology Roadmap for Semiconductors (
2015
).
6.
H.
Kroemer
, “
Polar-on-nonpolar epitaxy
,”
J. Cryst. Growth
81
,
193
(
1987
).
7.
B.
Kunert
,
K.
Volz
,
J.
Koch
, and
W.
Stolz
, “
MOVPE growth conditions of the novel direct band gap, diluted nitride Ga(NasP) material system pseudomorphically strained on GaP-substrate
,”
J. Cryst. Growth
298
,
121
(
2007
).
8.
K.
Volz
,
A.
Beyer
,
W.
Witte
,
J.
Ohlmann
,
I.
Nemeth
,
B.
Kunert
, and
W.
Stolz
, “
GaP-nucleation on exact Si (0 0 1) substrates for III/V device integration
,”
J. Cryst. Growth
315
,
37
(
2011
).
9.
A.
Beyer
,
J.
Ohlmann
,
S.
Liebich
,
H.
Heim
,
G.
Witte
,
W.
Stolz
, and
K.
Volz
, “
GaP heteroepitaxy on Si(001): Correlation of Si-surface structure, GaP growth conditions, and Si-III/V interface structure
,”
J. Appl. Phys.
111
,
083534
(
2012
).
10.
T. J.
Grassman
,
J. A.
Carlin
,
B.
Galiana
,
M.
Yang
,
F.
Yang
,
M. J.
Mills
, and
S. A.
Ringel
, “
Nucleation-related defect-free GaP/Si(100) heteroepitaxy via metal-organic chemical vapor deposition
,”
Appl. Phys. Lett.
102
,
142102
(
2013
).
11.
K.
Yamane
, “
Growth of pit-free GaP on Si by suppression of a surface reaction at an initial growth stage
,”
J. Cryst. Growth
311
,
794
(
2009
).
12.
N.
Hossain
,
S. R.
Jin
,
S.
Liebich
,
M.
Zimprich
,
K.
Volk
,
B.
Kunert
,
W.
Stolz
, and
S. J.
Sweeney
, “
Efficiency-limiting processes in Ga(NAsP)/GaP quantum well lasers
,”
Appl. Phys. Lett.
101
,
011107
(
2012
).
13.
E. P.
O'Reilly
,
A.
Lindsay
,
S.
Tomic
, and
M.
Kamal-Saadi
,
Semicond. Sci. Technol.
17
,
870
(
2002
).
14.
K.
Volz
,
J.
Koch
,
F.
Höhnsdorf
,
B.
Kunert
, and
W.
Stolz
, “
MOVPE growth of dilute nitride III/V semiconductors using all liquid metalorganic precursors
,”
J. Cryst. Growth
311
,
2418
(
2009
).
15.
W.
Shan
,
W.
Walukiewicz
,
J. W.
Ager
 III
,
E. E.
Haller
,
J. F.
Geisz
,
D. J.
Friedman
,
J. M.
Olson
, and
S. R.
Kurtz
,
Phys. Rev. Lett.
82
,
1221
(
1999
).
16.
I.
Nemeth
,
B.
Kunert
,
W.
Stolz
, and
K.
Volz
, “
Heteroepitaxy of GaP on Si: Correlation of morphology, anti-phase-domain structure and MOVPE growth conditions
,”
J. Cryst. Growth
310
,
1595
(
2008
).
17.
J.-T.
Zettler
,
K.
Haberland
,
M.
Zorn
,
M.
Pristovsek
,
W.
Richter
, and
P.
Kurpas
, “
Real-time monitoring of MOVPE device growth by reflectance anisotropy spectroscopy and related optical techniques
,”
J. Cryst. Growth
195
,
151
(
1998
).
18.
K.
Haberland
,
A.
Kaluza
,
M.
Zorn
,
M.
Pristovsek
,
H.
Hardtdegen
,
M.
Weyers
,
J.-T.
Zettler
, and
W.
Richter
, “
Real-time calibration of wafer temperature, growth rate and composition by optical in-situ techniques during AlxGa1-xAs growth in MOVPE
,”
J. Cryst. Growth
240
,
87
(
2002
).
19.
M.
Zorn
,
K.
Haberland
,
A.
Knigge
,
A.
Bhattacharya
,
M.
Weyers
,
J.-T.
Zettler
, and
W.
Richter
, “
MOVPE process development for 650 nm VCSELS using optical in-situ techniques
,”
J. Cryst. Growth
235
,
25
(
2002
).
20.
S.
Rogowsky
,
M.
Baeumler
,
M.
Wolfer
,
L.
Kirste
,
R.
Ostendorf
,
J.
Wagner
,
S.
Liebich
,
W.
Stolz
,
K.
Volz
, and
B.
Kunert
,
J. Appl. Phys.
109
,
053504
(
2011
).
21.
J.
Wei
,
J.
Murray
,
J.
Barnes
,
L.
Gonzalez
, and
S.
Guha
,
J. Electron. Mater.
41
(
10
),
2857
(
2012
).
22.
S. K.
Tripathy
, “
Refractive indices of semiconductors from energy gaps
,”
Opt. Mater.
46
,
240
(
2015
).
23.
N.
Hossain
,
T. J. C.
Hosea
,
S. J.
Sweeney
,
S.
Liebich
,
M.
Zimprich
,
K.
Volz
,
B.
Kunert
, and
W.
Stolz
, “
Band structure properties of novel BxGa1−xP alloys for silicon integration
,”
J. Appl. Phys.
110
,
063101
(
2011
).
You do not currently have access to this content.