The special electronic structure of gold gives rise to many interesting phenomena, such as its color. The surface segregation of the silver-gold system has been the subject of numerous experimental and theoretical studies, yielding conflicting results ranging from strong Ag surface enrichment to Au surface segregation. Via a combined approach of density functional theory (DFT) and statistical physics, we have analyzed the segregation at the Ag-Au (111) surface with different Ag bulk concentrations. Interestingly, we observe a moderate Au surface segregation, which is due to a charge transfer from the less electronegative Ag to Au. Canonical Monte Carlo simulations suggest that the calculated concentration profile with a Au-enriched surface layer remains stable up to higher temperatures. However, the presence of adsorbed oxygen reverses the segregation behavior and leads to strong Ag enrichment of the surface layer.

1.
D. Y.
Cha
and
G.
Parravano
, “
Surface reactivity of supported gold. I. Oxygen transfer between CO and CO2
,”
J. Catal.
18
,
200
(
1970
).
2.
G. C.
Bond
and
P. A.
Sermon
, “
Gold catalysts for olefin hydrogeneration
,”
Gold Bull.
6
,
102
(
1973
).
3.
S.
Galvagno
and
G.
Parravano
, “
Chemical reactivity of supported gold. IV. Reduction of NO by H2
,”
J. Catal.
55
,
178
(
1978
).
4.
V.
Zielasek
,
B.
Jürgens
,
C.
Schulz
,
J.
Biener
,
M. M.
Biener
,
A. V.
Hamza
, and
M.
Bäumer
, “
Gold catalysts: Nanoporous gold foams
,”
Angew. Chem. Int. Ed.
45
,
8241
(
2006
).
5.
C.
Xu
,
J.
Su
,
X.
Xu
,
P.
Liu
,
H.
Zhao
,
F.
Tian
, and
Y.
Ding
, “
Low temperature CO oxidation over unsupported nanoporous gold
,”
J. Am. Chem. Soc.
129
,
42
(
2007
).
6.
B.
Jürgens
,
C.
Kübel
,
C.
Schulz
,
T.
Nowitzki
,
V.
Zielasek
,
J.
Biener
,
M. M.
Biener
,
A. V.
Hamza
, and
M.
Bäumer
, “
New gold and silver-gold catalysts in the shape of sponges and sieves
,”
Gold Bull.
40
,
142
(
2007
).
7.
A.
Wittstock
,
A.
Wichmann
, and
M.
Bäumer
, “
Nanoporous gold as a platform for a building block catalyst
,”
ACS Catal.
2
,
2199
(
2012
).
8.
L.-C.
Wang
,
Y.
Zhong
,
H.
Jin
,
D.
Widmann
,
J.
Weissmüller
, and
R. J.
Behm
, “
Catalytic activity of nanostructured Au: Scale effects versus bimetallic/bifunctional effects in low-temperature CO oxidation on nanoporous Au
,”
Beilstein J. Nanotechnol.
4
,
111
(
2013
).
9.
A.
Wittstock
and
M.
Bäumer
, “
Catalysis by unsupported skeletal gold catalysts
,”
Acc. Chem. Res.
47
,
731
(
2014
).
10.
A.
Wittstock
,
V.
Zielasek
,
J.
Biener
,
C. M.
Friend
, and
M.
Bäumer
, “
Nanoporous gold catalysts for selective gas-phase oxidative coupling of methanol at low temperature
,”
Science
327
,
319
(
2010
).
11.
D.
Lee
,
X.
Wei
,
X.
Chen
,
M.
Zhao
,
S. C.
Jun
,
J.
Hone
,
E. G.
Herbert
,
W. C.
Oliver
, and
J. W.
Kysar
, “
Microfabrication and mechanical properties of nanoporous gold at the nanoscale
,”
Scr. Mater.
56
,
437
(
2007
).
12.
Y.
Ding
,
Y.
Kim
, and
J.
Erlebacher
, “
Nanoporous gold leaf: Ancient technology/advanced material
,”
Adv. Mater.
16
,
1897
(
2004
).
13.
E.
Seker
,
M. L.
Reed
, and
M. R.
Begley
, “
Nanoporous gold: Fabrication, characterization, and applications
,”
Materials
2
,
2188
(
2009
).
14.
A.
Wittstock
,
B.
Neumann
,
A.
Schaefer
,
K.
Dumbuya
,
C.
Kübel
,
M. M.
Biener
,
V.
Zielasek
,
H.-P.
Steinrück
,
J. M.
Gottfried
,
J.
Biener
,
A.
Hamza
, and
M.
Bäumer
, “
Nanoporous Au: An unsupported pure gold catalyst?
,”
J. Phys. Chem. C
113
,
5593
(
2009
).
15.
L. V.
Moskaleva
,
S.
Röhe
,
A.
Wittstock
,
V.
Zielasek
,
T.
Klüner
,
K. M.
Neyman
, and
M.
Bäumer
, “
Silver residues as a possible key to a remarkable oxidative catalytic activity of nanoporous gold
,”
Phys. Chem. Chem. Phys.
13
,
4529
(
2011
).
16.
T.
Krekeler
,
A. V.
Straßer
,
M.
Graf
,
K.
Wang
,
C.
Hartig
,
M.
Ritter
, and
J.
Weissmüller
, “
Silver-rich clusters in nanoporous gold
,”
Mater. Res. Lett.
5
,
314
(
2017
).
17.
T.
Fujita
,
P.
Guan
,
K.
McKenna
,
X.
Lang
,
A.
Hirata
,
L.
Zhang
,
T.
Tokunaga
,
S.
Arai
,
Y.
Yamamoto
,
N.
Tanaka
,
Y.
Ishikawa
,
N.
Asao
,
Y.
Yamamoto
,
J.
Erlebacher
, and
M.
Chen
, “
Atomic origins of the high catalytic activity of nanoporous gold
,”
Nat. Mat.
11
,
775
(
2012
).
18.
S. C.
Fain
, Jr.
and
J. M.
McDavid
, “
Work-function variation with alloy composition: Ag-Au
,”
Phys. Rev. B
9
,
5099
(
1974
).
19.
K.
Meinel
,
M.
Klaua
, and
H.
Bethge
, “
Segregation and sputter effects on perfectly smooth (111) and (100) surfaces of Au-Ag alloys studied by AES
,”
Phys. Status Solidi A
106
,
133
(
1988
).
20.
S. H.
Overbury
and
G. A.
Somorjai
, “
The surface composition of the silver-gold system by Auger electron spectroscopy
,”
Surf. Sci.
55
,
209
(
1976
).
21.
R.
Bouwman
,
L. H.
Toneman
,
M. A. M.
Boersma
, and
R. A.
Van Santen
, “
Surface enrichment in Ag-Au alloys
,”
Surf. Sci.
59
,
72
(
1976
).
22.
T. S.
King
and
R. G.
Donnelly
, “
Surface compositions and composition profiles of Ag-Au (100), (110), and (111) surfaces determined quantitatively by Auger electron spectroscopy
,”
Surf. Sci.
151
,
374
(
1985
).
23.
P. A.
Dowben
,
A. H.
Miller
, and
R. W.
Vook
, “
Surface segregation from gold alloys
,”
Gold Bull.
20
,
54
(
1987
).
24.
G. C.
Nelson
, “
Determination of the surface versus bulk composition of silver-gold alloys by low energy ion scattering spectroscopy
,”
Surf. Sci.
59
,
310
(
1976
).
25.
M. J.
Kelley
,
D. G.
Swartzfager
, and
V. S.
Sundaram
, “
Surface segregation in the Ag-Au and Pt-Cu systems
,”
J. Vac. Sci. Technol.
16
,
664
(
1979
).
26.
G. N.
Derry
and
R.
Wan
, “
Comparison of surface structure and segregation in AgAu and NiPd alloys
,”
Surf. Sci.
566–568
,
862
(
2004
).
27.
T.
Deronzier
,
F.
Morfin
,
M.
Lomello
, and
J.-L.
Rousset
, “
Catalysis on nanoporous gold–silver systems: Synergistic effects toward oxidation reactions and influence of the surface composition
,”
J. Catal.
311
,
221
(
2014
).
28.
G.
Bozzolo
,
J. E.
Garces
, and
G. N.
Derry
, “
Atomistic modeling of segregation and bulk ordering in Ag–Au alloys
,”
Surf. Sci.
601
,
2038
(
2007
).
29.
L.
Deng
,
W.
Hu
,
H.
Deng
,
S.
Xiao
, and
J.
Tang
, “
Au-Ag bimetallic nanoparticles: Surface segregation and atomic-scale structure
,”
J. Phys. Chem. C
115
,
11355
(
2011
).
30.
F.
Chen
and
R. L.
Johnston
, “
Charge transfer driven surface segregation of gold atoms in 13-atom Au–Ag nanoalloys and its relevance to their structural, optical and electronic properties
,”
Acta Mater.
56
,
2374
(
2008
).
31.
L. O.
Paz-Borbon
,
R. L.
Johnston
,
G.
Barcaro
, and
A.
Fortunelli
, “
Structural motifs, mixing, and segregation effects in 38-atom binary clusters
,”
J. Chem. Phys.
128
,
134517
(
2008
).
32.
A. L.
Gould
,
C. J.
Heard
,
A. J.
Logsdail
, and
C. R. A.
Catlow
, “
Segregation effects on the properties of (AuAg)147
,”
Phys. Chem. Chem. Phys.
16
,
21049
(
2014
).
33.
V.
Bonacic-Koutecky
,
J.
Burda
,
R.
Mitric
,
M.
Ge
,
G.
Zampella
, and
P.
Fantucci
, “
Density functional study of structural and electronic properties of bimetallic silver–gold clusters: Comparison with pure gold and silver clusters
,”
J. Chem. Phys.
117
,
3120
(
2002
).
34.
R.
Mitric
,
C.
Bürgel
,
J.
Burda
,
V.
Bonacic-Koutecky
, and
P.
Fantucci
, “
Structural properties and reactivity of bimetallic silver-gold clusters
,”
Eur. Phys. J. D
24
,
41
(
2003
).
35.
P.
Weis
,
O.
Welz
,
E.
Vollmer
, and
M. M.
Kappes
, “
Structures of mixed gold-silver cluster cations (AgmAun+, m + n < 6): Ion mobility measurements and density-functional calculations
,”
J. Chem. Phys.
120
,
677
(
2004
).
36.
J. M.
Sanchez
and
D.
de Fontaine
,
Structure and Bonding in Crystals
, Vol.
21
(
Academic
,
1981
).
37.
J. M.
Sanchez
,
F.
Ducastelle
, and
D.
Gratias
, “
Generalized cluster expansion of multicomponent systems
,”
Phys. A
128
,
334
(
1984
).
38.
Here and in the following, the term “ground state” refers to the lowest energy configuration and should not be confused with the electronic ground state.
39.
S.
Müller
,
M.
Söthr
, and
O.
Wieckhorst
, “
Structure and stability of binary alloy surfaces: Segregation, relaxation, and ordering from first-principles calculations
,”
Appl. Phys. A
82
,
415
(
2006
).
40.
S.
Müller
, “
Density functional theory meets statistical physics: From the atomistic to the mesoscopic properties of alloys
,”
Surf. Interface Anal.
38
,
1158
(
2006
).
41.
P.
Welker
,
O.
Wieckhorst
,
T. C.
Kerscher
, and
S.
Müller
, “
Predicting the segregation profile of the Pt25Rh75(100) surface from first-principles
,”
J. Phys.: Condens. Matter
22
,
384203
(
2010
).
42.
S.
Hoppe
,
Y.
Li
,
L. V.
Moskaleva
, and
S.
Müller
, “
How silver segregation stabilizes 1D surface gold oxide: A cluster expansion study combined with ab initio MD simulations
,”
Phys. Chem. Chem. Phys.
19
,
14845
(
2017
).
43.
G.
Kresse
and
J.
Hafner
, “
Ab initio molecular dynamics for liquid metals
,”
Phys. Rev. B
47
,
558
(
1993
).
44.
G.
Kresse
and
J.
Hafner
, “
Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium
,”
Phys. Rev. B
49
,
14251
(
1994
).
45.
G.
Kresse
and
J.
Furthmüller
, “
Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
,”
Comput. Mater. Sci
6
,
15
(
1996
).
46.
P. E.
Blöchl
, “
Projector augmented-wave method
,”
Phys. Rev. B
50
,
17953
(
1994
).
47.
G.
Kresse
and
D.
Joubert
, “
From ultrasoft pseudopotentials to the projector augmented-wave method
,”
Phys. Rev. B
59
,
1758
(
1999
).
48.
M.
Methfessel
and
A. T.
Paxton
, “
High-precision sampling for Brillouin-zone integration in metals
,”
Phys. Rev. B
40
,
3616
(
1989
).
49.
H. J.
Monkhorst
and
J. D.
Pack
, “
Special points for Brillouin-zone integrations
,”
Phys. Rev. B
13
,
5188
(
1976
).
50.
J. P.
Perdew
,
K.
Burke
, and
Y.
Wang
, “
Generalized gradient approximation for the exchange-correlation hole of a many-electron system
,”
Phys. Rev. B
54
,
16533
(
1996
).
51.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
, “
A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
,”
J. Chem. Phys
132
,
154104
(
2010
).
52.
I.-K.
Suh
,
H.
Ohta
, and
Y.
Waseda
, “
High-temperature thermal expansion of six metallic elements measured by dilatation method and X-ray diffraction
,”
J. Mater. Sci.
23
,
757
(
1988
).
53.
C.
Kittel
,
Introduction to Solid State Physics
, 8th ed. (
John Wiley & Sons
,
NJ
,
2004
).
54.
W.
Reckien
,
F.
Janetzko
,
M. F.
Peintinger
, and
T.
Bredow
, “
Implementation of empirical dispersion corrections to density functional theory for periodic systems
,”
J. Comput. Chem.
33
,
2023
(
2012
).
55.
J. J.
Rehr
,
E.
Zaremba
, and
W.
Kohn
, “
van der Waals forces in the noble metals
,”
Phys. Rev. B
12
,
2062
(
1975
).
56.
V.
Ozolins
,
C.
Wolverton
, and
A.
Zunger
, “
Cu-Au, Ag-Au, Cu-Ag, and Ni-Au intermetallics: First-principles study of temperature-composition phase diagrams and structures
,”
Phys. Rev. B
57
,
6427
(
1998
).
57.
H.
Shi
and
C.
Stampfl
, “
First-principles investigations of the structure and stability of oxygen adsorption and surface oxide formation at Au(111)
,”
Phys. Rev. B
76
,
075327
(
2007
).
58.
J.
Neugebauer
and
M.
Scheffler
, “
Adsorbate-substrate and adsorbate-adsorbate interactions of Na and K adlayers on Al(111)
,”
Phys. Rev. B
46
,
16067
(
1992
).
59.
G.
Makov
and
M. C.
Payne
, “
Periodic boundary conditions in ab initio calculations
,”
Phys. Rev. B
51
,
4014
(
1995
).
60.
V. A.
Lubarda
, “
On the effective lattice parameter of binary alloys
,”
Mech. Mater.
35
,
53
(
2003
).
61.
D.
Lerch
,
O.
Wieckhorst
,
G. L. W.
Hart
,
R. W.
Forcade
, and
S.
Müller
, “
UNCLE: A code for constructing cluster expansions for arbitrary lattices with minimal user-input
,”
Modell. Simul. Mater. Sci. Eng.
17
,
055003
(
2009
).
62.
G. L. W.
Hart
,
V.
Blum
,
M. J.
Walorski
, and
A.
Zunger
, “
Evolutionary approach for determining first-principles hamiltonians
,”
Nat. Mater.
4
,
391
(
2005
).
63.
V.
Blum
,
G. L. W.
Hart
,
M. J.
Walorski
, and
A.
Zunger
, “
Using genetic algorithms to map first-principles results to model Hamiltonians: Application to the generalized Ising model for alloys
,”
Phys. Rev. B
72
,
165113
(
2005
).
64.
G. L. W.
Hart
and
R. W.
Forcade
, “
Generating derivative structures from multilattices: Algorithm and application to hcp alloys
,”
Phys. Rev. B
80
,
014120
(
2009
).
65.
G. L. W.
Hart
,
L. J.
Nelson
, and
R. W.
Forcade
, “
Generating derivative structures at a fixed concentration
,”
Comput. Mater. Sci.
59
,
101
(
2012
).
66.
N.
Metropolis
,
A. W.
Rosenbluth
,
M. N.
Rosenbluth
,
A. H.
Teller
, and
E.
Teller
, “
Equation of state calculations by fast computing machines
,”
J. Chem. Phys.
21
,
1087
(
1953
).
67.
T. C.
Kerscher
,
S.
Müller
,
Q. O.
Snell
, and
G. L. W.
Hart
, “
Large-scale lattice gas Monte Carlo simulations for the generalized Ising model
,” in
IEEE International Parallel Distributed Processing Symposium (IPDPS)
(
2011
), p.
1234
.
68.
A.
Dianat
,
J.
Zimmermann
,
N.
Seriani
,
M.
Bobeth
,
W.
Pompe
, and
L. C.
Ciacchi
, “
Ab initio study of element segregation and oxygen adsorption on PtPd and CoCr binary alloy surfaces
,”
Surf. Sci.
602
,
876
(
2008
).
69.
J.
Friedel
, “
The physics of clean metal surfaces
,”
Ann. Phys.
1
,
257
(
1976
).
70.
H. L.
Skriver
and
N. M.
Rosengaard
, “
Surface energy and work function of elemental metals
,”
Phys. Rev. B
46
,
7157
(
1992
).
71.
L.-S.
Wang
, “
Covalent gold
,”
Phys. Chem. Chem. Phys.
12
,
8694
(
2010
).
72.
R.
Bader
,
Atoms in Molecules: A Quantum Theory
(
Oxford University Press
,
1990
).
73.
G.
Henkelmann
,
A.
Arnaldsson
, and
H.
Jonsson
, “
A fast and robust algorithm for Bader decomposition of charge density
,”
Comput. Mater. Sci.
36
,
354
(
2006
).
74.
E.
Sanville
,
S. D.
Kenny
,
R.
Smith
, and
G.
Henkelmann
, “
An improved grid-based algorithm for Bader charge allocation
,”
J. Comput. Chem.
28
,
899
(
2007
).
75.
S.
Gonzáles
,
K. M.
Neyman
,
S.
Shaikhutdinov
,
H.-J.
Freund
, and
F.
Illas
, “
On the promoting role of Ag in selective hydrogenation reactions over Pd-Ag bimetallic catalysts: A theoretical study
,”
J. Phys. Chem. C
111
,
6852
(
2007
).
76.
F.
Tao
,
M. E.
Grass
,
Y.
Zhang
,
D. R.
Butcher
,
J. R.
Renzas
,
Z.
Liu
,
J. Y.
Chung
,
B. S.
Mun
,
M.
Salmeron
, and
G. A.
Somorjai
, “
Reaction-driven restructuring of Rh-Pd and Pt-Pd core-shell nanoparticles
,”
Science
322
,
932
(
2008
).
You do not currently have access to this content.