An effective surface charge removal is critical to diverse applications of polymer and other soft organic materials in electrical devices and systems. Here, we report on the application of atmospheric pressure dielectric barrier discharge (AP-DBD) to deposit SiOx thin films to improve the surface charge dissipation on an epoxy resin surface. The SiOx nanofilms are formed at atmospheric pressure, with the replacement of organic groups (C-H, C=O and C=C) with inorganic groups (Si-O-Si and Si-OH) within the thin surface layer. After the plasma deposition, the initial surface charge decreased by 12% and the surface charge dissipation was accelerated. The flashover voltage which characterizes the insulation property of the epoxy resin is increased by 42%. These improvements are attributed to the lower density of shallow charge traps introduced by SiOx film deposition, which also corresponds to the surface conductivity increase. These results suggest that the SiOx deposition by AP-DBD is promising to accelerate surface charge dissipation. This method is generic, applicable for other types of precursors and may open new avenues for the development of next-generation organic-inorganic insulation materials with customized charge dissipation properties.

1.
B.
Lutz
and
J.
Kindersberger
,
IEEE Trans. Dielectr. Insul.
18
,
2040
2048
(
2010
).
2.
T.
Junglen
,
T.
Rieger
,
S. A.
Rangwala
,
P.
Pinkse
, and
G.
Rempe
,
Phys. Rev. Lett.
92
,
223001
(
2004
).
3.
L.
Niemeyer
and
J.
Seeger
,
J. Phys. D: Appl. Phys.
48
,
435501
(
2015
).
4.
M.
Xiao
and
B.
Du
,
High Voltage
1
,
34
42
(
2016
).
5.
H.
Zang
,
Y.
Hsiao
, and
B.
Hu
,
Phys. Chem. Chem. Phys.
16
,
4971
4976
(
2014
).
6.
H. C.
Miller
,
IEEE Trans. Dielectr. Electr. Insul.
22
,
3641
3657
(
2015
).
7.
H.
Houruchi
,
A.
Nikolov
, and
D. T.
Wasan
,
J. Colloid Interface Sci.
385
,
218
224
(
2012
).
8.
Y.
Feurprier
,
C.
Cardinaud
, and
G.
Turban
,
Plasma Sources Sci. Technol.
6
,
334
342
(
1997
).
9.
N.
Chen
,
D. H.
Kim
,
P.
Kovacik
,
H.
Sojoudi
,
M.
Wang
, and
K. K.
Gleason
,
Annu. Rev. Chem. Biomol.
7
,
373
393
(
2016
).
10.
Y.
Shen
,
S.
Luo
,
S.
Yu
,
R.
Sun
, and
C.
Wong
,
High Voltage
1
,
175
180
(
2016
).
11.
B. X.
Du
and
Y.
Gao
,
IEEE Trans. Dielectr. Electr. Insul.
16
,
876
881
(
2009
).
12.
B.
Zhang
,
C.
Zhang
,
Q.
Wang
,
C.
Li
,
J.
He
, and
Z.
An
,
AIP Adv.
5
,
127207
(
2015
).
13.
T.
Shao
,
W.
Yang
,
C.
Zhang
,
N.
Zheng
,
P.
Yan
, and
E.
Schamiloglu
,
Appl. Phys. Lett.
105
,
071607
(
2014
).
14.
W.
Zhou
,
J.
Zhen
,
Q.
Liu
,
Z.
Fang
,
D.
Li
,
P.
Zhou
,
T.
Chen
, and
S.
Yang
,
J. Mater. Chem. A.
5
,
1724
1733
(
2017
).
15.
T.
Desmet
,
R.
Morent
,
G. N.
De
,
C.
Leys
, and
E.
Schacht
,
Biomacromolecules
10
,
2351
2387
(
2009
).
16.
M.
Klingsporn
,
S.
Kirner
,
C.
Villringer
,
D.
Abou-Ras
, and
I.
Costina
,
J. Appl. Phys.
121
,
044305
(
2017
).
17.
T.
Shao
,
Y.
Zhou
,
C.
Zhang
,
W.
Yang
,
Z.
Niu
, and
C.
Ren
,
IEEE Trans. Dielectr. Electr. Insul.
22
,
1747
1754
(
2015
).
18.
Y. S.
Lee
,
J. H.
Han
,
J. S.
Park
, and
J.
Park
,
J. Vac. Sci. Technol. A.
35
,
041508
(
2017
).
19.
X.
Tang
,
K.
Li
,
H.
Yi
,
P.
Ning
,
Y.
Xiang
,
J.
Wang
, and
C.
Wang
,
J. Phys. Chem. C.
116
,
10017
10028
(
2012
).
20.
W.
Yan
,
Z.
Han
,
B. T.
Phung
, and
K.
Ostrikov
,
Appl. Mater. Interfaces
4
,
2637
2642
(
2012
).
21.
X.
Tang
,
F.
Gao
,
Y.
Xiang
,
H.
Yi
, and
S.
Zhao
,
Catal. Commun.
64
,
12
17
(
2015
).
22.
Y.
Toshiaki
,
O.
Masaaki
,
I.
Norikazu
, and
M.
Yasunao
,
Plasma Chem. Plasma Process.
24
,
1
12
(
2004
).
23.
B.
Thierry
,
M.
Jasieniak
,
L. C. P. M.
de Smet
,
K.
Vasilev
, and
H. J.
Griesser
,
Langmuir
24
,
10187
10195
(
2008
).
24.
R.
Wang
,
Y.
Shen
,
C.
Zhang
,
P.
Yan
, and
T.
Shao
,
Appl. Surf. Sci.
367
,
401
406
(
2016
).
25.
Q.
Xie
,
X.
Liu
,
C.
Zhang
,
R.
Wang
,
Z.
Rao
, and
T.
Shao
,
Plasma Sci. Technol.
18
,
325
330
(
2016
).
26.
H.
Zhang
,
G.
Zheng
,
C.
Qiang
,
X.
Wang
,
Z.
Wang
, and
Z.
Liu
,
Thin Solid Films
615
,
63
68
(
2016
).
27.
N. D.
Boscher
,
P.
Choquet
,
D.
Duday
, and
S.
Verdier
,
Plasma Process. Polym.
7
,
163
171
(
2010
).
28.
P.
Bringmann
,
O.
Rohr
,
F. J.
Gammel
, and
I.
Jansen
,
Plasma Process. Polym.
6
,
496
500
(
2009
).
29.
C.
Zhang
,
H.
Lin
,
S.
Zhang
,
Q.
Xie
,
C.
Ren
, and
T.
Shao
,
J. Phys. D: Appl. Phys.
50
,
405203
(
2017
).
30.
C.
Zhang
,
T.
Shao
,
R.
Wang
,
W.
Huang
,
Z.
Niu
, and
E.
Schamilloglu
,
IEEE Trans. Dielectr. Electr. Insul.
22
,
1907
1915
(
2015
).
31.
R.
Wang
,
W.
Li
,
C.
Zhang
,
C.
Ren
,
K.
Ostrikov
, and
T.
Shao
,
Plasma Process. Polym.
14
,
e1600224
(
2017
).
32.
S.
Thomas
,
S.
Raman
,
P.
Mohanan
, and
M. T.
Sebastian
,
Composites, Part A
41
,
1148
1155
(
2010
).
33.
E.
Kedronova
,
L.
Zajickova
,
D.
Hegemann
,
M.
Klima
, and
M.
Michlicke
,
Plasma. Process. Polym.
12
,
1231
1243
(
2015
).
34.
T.
Hosono
,
K.
Kato
, and
A.
Morita
,
IEEE Trans. Dielectr. Electr. Insul.
14
,
627
633
(
2007
).
35.
G.
Teyssedre
and
C.
Laurent
,
IEEE Trans. Dielectr. Electr. Insul.
12
,
857
875
(
2005
).
36.
Z.
Fang
,
C.
Ruan
,
T.
Shao
, and
C.
Zhang
,
Plasma Sources Sci. Technol.
25
,
01LT01
(
2016
).
37.
Y.
Jin
,
C.
Ren
,
L.
Yang
, and
D.
Wang
,
IEEE Trans. Plasma Sci.
43
,
3193
3199
(
2015
).
38.
B.
Zhang
,
Y.
Zhu
,
F.
Liu
, and
Z.
Fang
,
Plasma Sci. Technol.
19
,
064001
(
2017
).
39.
P. J.
Stout
and
M. J.
Kushner
,
J. Vac. Sci. Technol., A
11
,
2562
2571
(
1993
).
40.
M.
Abbasi-Firouzjah
,
S. I.
Hosseini
,
M.
Shariat
, and
B.
Shariat
,
J. NonCryst. Solids
368
,
86
92
(
2013
).
41.
P.
Rajasekaran
,
P.
Mertmann
,
N.
Bibinov
, and
P.
Awakowicz
,
Plasma. Process. Polym.
7
,
665
675
(
2010
).
42.
R.
Wang
,
C.
Zhang
,
X.
Liu
,
Q.
Xie
,
P.
Yan
, and
T.
Shao
,
Appl. Surf. Sci.
328
,
509
515
(
2015
).
43.
P.
Llovera
and
P.
Molinié
,
IEEE Trans. Dielectr. Electr. Insul.
11
,
1049
1056
(
2004
).
44.
Q.
Xie
,
Y.
Wang
,
X.
Liu
,
H.
Huang
,
C.
Zhang
, and
T.
Shao
,
IEEE Trans. Dielectr. Electr. Insul.
23
,
2328
2336
(
2016
).
45.
T.
Shao
,
F.
Liu
,
B.
Hai
,
Y.
Ma
,
R.
Wang
, and
C.
Ren
,
IEEE Trans. Dielectr. Electr. Insul.
24
,
1557
1565
(
2017
).
46.
W. A.
Stygar
,
J. A.
Lott
, and
T. C.
Wagoner
,
Rev. Mod. Phys.
8
,
50401
(
2005
).
47.
A.
Kumada
and
S.
Okabe
,
IEEE Trans. Dielectr. Electr. Insul.
11
,
929
938
(
2004
).
48.
G.
Han
,
T.
Koh
,
S.
Lim
,
T.
Goh
,
X.
Guo
,
S.
Leow
,
R.
Begum
,
T.
Sum
,
N.
Mathews
, and
S.
Mhaisalkar
,
Appl. Mater. Interfaces
9
,
21292
21297
(
2017
).
49.
T.
Zhou
,
G.
Chen
,
R.
Liao
, and
Z.
Xu
,
J. Appl. Phys.
110
,
043724
(
2011
).
50.
S.
Kumara
,
B.
Ma
,
Y. V.
Serdyuk
, and
S. M.
Gubanski
,
IEEE Trans. Dielectr. Electr. Insul.
19
,
2189
2195
(
2012
).
51.
J.
Kindersberger
and
C.
Lederle
,
IEEE Trans. Dielectr. Electr. Insul.
15
,
949
957
(
2008
).
52.
B.
Zhang
and
G.
Zhang
,
J. Appl. Phys.
121
,
105105
(
2017
).
53.
J.
Kindersberger
and
C.
Lederle
,
IEEE Trans. Dielectr. Electr. Insul.
15
,
941
948
(
2008
).
54.
S. A.
Boggs
and
J.
Kuang
, in
IEEE Conference on Electrical Insulation and Dielectric Phenomena
(
1994
), pp.
292
297
.
55.
D. K.
Das-Gupta
,
IEEE Trans. Dielectr. Electr. Insul.
27
,
909
923
(
1992
).
56.
C.
Li
,
J.
Hu
,
C.
Lin
, and
J.
He
,
J. Phys. D: Appl. Phys.
50
,
065301
(
2017
).
57.
S.
Xu
,
I.
Levchenko
,
S. Y.
Huang
, and
K.
Ostrikov
,
Appl. Phys. Lett.
95
,
111505
(
2009
).
58.
S. V.
Vladimirov
,
K. N.
Ostrikov
,
M. Y.
Yu
, and
L.
Stenflo
,
Phys. Rev. E
58
,
8046
(
1998
).
You do not currently have access to this content.