Nanostructured and disordered superconductors exhibit many exotic fundamental phenomena, and also have many possible applications. We show here that films of superconducting lead nanoparticles with a wide range of particle coverages, exhibit non-linear V(I) characteristics that are consistent with percolation theory. Specifically, it is found that V(IIc)a, where a = 2.1 ± 0.2, independent of both temperature and particle coverage, and that the measured critical currents (Ic) are also consistent with percolation models. For samples with low normal state resistances, this behaviour is observable only in pulsed current measurements, which suppress heating effects. We show that the present results are not explained by vortex unbinding [Berezinskii-Kosterlitz-Thouless] physics, which is expected in such samples, but which gives rise to a different power law behaviour. Finally, we compare our results to previous calculations and simulations, and conclude that further theoretical developments are required to explain the high level of consistency in the measured exponents a.

1.
A.
Davidson
and
M.
Tinkham
,
Phys. Rev. B
13
,
3261
(
1976
).
2.
G.
Deutscher
and
M.
Rappaport
,
J. Phys. Lett.
40
,
219
(
1979
).
3.
G.
Deutscher
,
O.
Entin-Wohlman
,
S.
Fishman
, and
Y.
Shapira
,
Phys. Rev. B
21
,
5041
(
1980
).
4.
S.
Kirkpatrick
,
AIP Conf. Proc.
58
,
79
(
1980
).
5.
P.
de Gennes
, in
Percolation, Localization, and Superconductivity
, edited by
A. M.
Goldman
and
S. A.
Wolf
(
Springer US
,
New York
,
1984
), pp.
83
94
.
6.
M.
Octavio
,
A.
Octavio
,
J.
Aponte
,
R.
Medina
, and
C.
Lobb
,
Phys. Rev. B
37
,
9292
(
1988
).
7.
Y.
Strelniker
,
A.
Frydman
, and
S.
Havlin
,
Phys. Rev. B
76
,
224528
(
2007
).
8.
M.
Eisterer
,
M.
Zehetmayer
, and
H.
Weber
,
Phys. Rev. Lett.
90
,
247002
(
2003
).
9.
D.
Haviland
,
Y.
Liu
, and
A.
Goldman
,
Phys. Rev. Lett.
62
,
2180
(
1989
).
10.
H.
Jaeger
,
D.
Haviland
,
B.
Orr
, and
A.
Goldman
,
Phys. Rev. B
40
,
182
(
1989
).
11.
M.
Choi
,
J.
Chung
, and
D.
Stroud
,
Phys. Rev. B
35
,
1669
(
1987
).
12.
M.
Forrester
,
H.
Lee
,
M.
Tinkham
, and
C.
Lobb
,
Phys. Rev. B
37
,
5966
(
1988
).
13.
D.
Harris
,
S.
Herbert
,
D.
Stroud
, and
J.
Garland
,
Phys. Rev. Lett.
67
,
3606
(
1991
).
14.
15.
D.
Haviland
,
H.
Jaeger
,
B.
Orr
, and
A.
Goldman
,
Phys. Rev. B
40
,
719
(
1989
).
16.
L.
Merchant
,
J.
Ostrick
,
R.
Barber
, and
R.
Dynes
, “
Crossover from phase fluctuation to amplitude-dominated superconductivity: A model system
,”
Phys. Rev. B
63
,
134508
(
2001
).
17.
Y.
Dubi
,
Y.
Meir
, and
Y.
Avishai
,
Nature
449
,
876
(
2007
).
18.
A.
Erez
and
Y.
Meir
,
Phys. Rev. Lett.
111
,
187002
(
2013
).
19.
M.
Ovadia
,
D.
Kalok
,
B.
Sacépé
, and
D.
Shahar
,
Nat. Phys.
9
,
415
(
2013
).
20.
R.
Koushik
,
S.
Kumar
,
K. R.
Amin
,
M.
Mondal
,
J.
Jesudasan
,
A.
Bid
,
P.
Raychaudhuri
, and
A.
Ghosh
,
Phys. Rev. Lett.
111
,
197001
(
2013
).
21.
Z.
Han
,
A.
Allain
, and
H.
Arjmandi-Tash
,
Nat. Phys.
10
,
380
(
2014
).
22.
A.
Nande
,
S.
Fostner
,
J.
Grigg
,
A.
Smith
,
K.
Temst
,
M. J.
Van Bael
, and
S. A.
Brown
,
Nanotechnology
28
,
165704
(
2017
).
23.
S.
Bose
,
P.
Raychaudhuri
,
R.
Banerjee
,
P.
Vasa
, and
P.
Ayyub
,
Phys. Rev. Lett.
95
,
147003
(
2005
).
24.
B.
Sacépé
,
C.
Chapelier
,
T.
Baturina
,
V.
Vinokur
,
M.
Baklanov
, and
M.
Sanquer
,
Phys. Rev. Lett.
101
,
157006
(
2008
).
25.
M.
Mondal
,
A.
Kamlapure
,
M.
Chand
,
G.
Saraswat
,
S.
Kumar
,
J.
Jesudasan
,
L.
Benfatto
,
V.
Tripathi
, and
P.
Raychaudhuri
,
Phys. Rev. Lett.
106
,
047001
(
2011
).
26.
A.
Allain
,
Z.
Han
, and
V.
Bouchiat
,
Nat. Mater.
11
,
590
(
2012
).
27.
S.
Feng
,
B.
Halperin
, and
P.
Sen
,
Phys. Rev. B
35
,
197
(
1987
).
28.
B.
Zeimetz
,
B.
Glowacki
, and
J.
Evetts
,
Eur. Phys. J. B
29
,
359
(
2002
).
29.
R.
Fazio
and
H.
van
,
der Zant, Phys. Rep.
355
,
235
(
2001
).
30.
Y.-J.
Yun
,
I.-C.
Baek
, and
M.-Y.
Choi
,
Phys. Rev. Lett.
97
,
215701
(
2006
).
31.
L.-H.
Tang
and
Q.-H.
Chen
,
Phys. Rev. B
67
,
024508
(
2003
).
32.
S.
John
and
T.
Lubensky
,
Phys. Rev. B
34
,
4815
(
1986
).
33.
M.
Prester
,
Supercond. Sci. Technol.
11
,
333
(
1998
).
34.
R.
Bradley
,
D.
Kung
,
P.
Strenski
, and
S.
Doniach
,
Phys. B
152
,
282
(
1988
).
35.
E.
Granato
and
D.
Domínguez
,
Phys. Rev. B
56
,
14671
(
1997
).
36.
37.
A.
Smith
, “
Simulating percolating superconductors
,” Ph.D. thesis (
University of Canterbury
,
2014
).
38.
J.
Fontcuberta
and
J.
Jurado
,
Z. Phys. B–Condens. Matter
87
,
21
(
1992
).
39.
G.
Blatter
,
M.
Feigel'man
, and
V.
Geshkenbein
,
Rev. Mod. Phys.
66
,
1125
(
1994
).
40.
V.
Berezinskii
,
Sov. J. Exp. Theor. Phys.
34
,
610
(
1972
).
41.
J.
Kosterlitz
and
D.
Thouless
,
J. Phys. C: Solid State Phys.
6
,
1181
(
1973
).
42.
Y. M.
Blanter
,
Y. E.
Lozovik
, and
A. Y.
Morozov
,
Phys. Scr.
52
,
237
(
1995
).
43.
B.
Costa
,
P.
Coura
, and
S.
Leonel
,
Phys. Lett. A
377
,
1239
(
2013
).
44.
L.
Benfatto
,
C.
Castellani
, and
T.
Giamarchi
,
Phys. Rev. B
80
,
214506
(
2009
).
45.
S.
Herbert
,
Y.
Jun
,
R.
Newrock
, and
C.
Lobb
,
Phys. Rev. B
57
,
1154
(
1998
).
46.
M. V.
Simkin
and
J. M.
Kosterlitz
,
Phys. Rev. B
55
,
11646
(
1997
).
47.
D.
Stauffer
and
A.
Aharony
,
Introduction to Percolation Theory
, 2nd ed. (
CRC Press
,
New York
,
1994
).
48.
J.
Schmelzer
,
S. A.
Brown
,
A.
Wurl
,
M.
Hyslop
, and
R. J.
Blaikie
,
Phys. Rev. Lett.
88
,
226802
(
2002
).
49.
S.
Fostner
,
R.
Brown
,
J.
Carr
, and
S. A.
Brown
,
Phys. Rev. B
89
,
075402
(
2014
).
50.
E. T.
Gawlinski
and
H. E.
Stanley
,
J. Phys. A: Math. Gen.
14
,
L291
(
1981
).
51.
J.
Quintanilla
and
S.
Torquato
,
Phys. Rev. E
54
,
4027
(
1996
).
52.
H.
Stanley
,
J. Phys. A: Math. Gen.
10
,
L211
(
1977
).
53.
A.
Coniglio
,
J. Phys. A: Math. Gen.
3829
,
3829
(
1982
).
54.
G.
Deutscher
and
O.
Entin-Wohlman
,
AIP Conf. Proc.
58
,
23
(
1980
).
55.
G.
Ambrosetti
,
I.
Balberg
, and
C.
Grimaldi
,
Phys. Rev. B
82
,
134201
(
2010
).
56.
R.
Reichel
,
J. G.
Partridge
,
A. D.
Dunbar
,
S. A.
Brown
,
O.
Caughley
, and
A.
Ayesh
,
J. Nanopart. Res.
8
,
405
(
2006
).
57.
J.
Bremer
and
V.
Newhouse
,
Phys. Rev.
116
,
309
(
1959
).
58.
J.
Maza
,
G.
Ferro
,
J.
Veira
, and
F.
Vidal
,
Phys. Rev. B
78
,
094512
(
2008
).
59.
J.
Cuppens
,
C. P.
Romero
,
P.
Lievens
, and
M. J.
Van Bael
,
Phys. Rev. B
81
,
064517
(
2010
).
60.
V.
Ambegaokar
and
A.
Baratoff
,
Phys. Rev. Lett.
11
,
104
(
1963
).
61.
K.
Das Gupta
,
S.
Soman
,
G.
Sambandamurthy
, and
N.
Chandrasekhar
,
Phys. Rev. B
66
,
144512
(
2002
).
62.
Note that because it is not possible to measure Ic(T = 0), there is a small uncertainty in the correct normalisation of the data: to manage this, we scale the value of Ic at the minimum measurement temperature to the empirical 1 – t4 curve. Alternative scaling procedures produce similar results.
63.
J.
Clem
,
B.
Bumble
,
S.
Raider
,
W.
Gallagher
, and
Y.
Shih
,
Phys. Rev. B
35
,
6637
(
1987
).
64.
A.
Kadin
,
K.
Epstein
, and
A.
Goldman
,
Phys. Rev. B
27
,
6691
(
1983
).
65.
This uncertainty calculated from the standard deviation of the fitted exponents for both pulsed and DC measurements together.
66.
S.
Roux
and
H. J.
Herrmann
,
Europhys. Lett.
4
,
1227
(
1987
).
67.
K.
Lee
and
D.
Stroud
,
Phys. Rev. B
45
,
2417
(
1992
).
68.
E.
Guyon
,
S.
Roux
, and
A.
Hansen
,
Rep. Prog. Phys.
53
,
373
(
1990
).
69.
S.
Bungre
and
S.
Cassidy
,
Supercond. Sci. Technol.
4
,
S250
(
1991
).
70.
P.
Peyral
,
C.
Lebeau
,
J.
Rosenblatt
,
A.
Raboutou
,
C.
Perrin
,
O.
Peña
, and
M.
Sergent
,
J. Less Common Met.
151
,
49
(
1989
).
71.
S.
Bungre
,
R.
Meisels
,
A.
Caplin
, and
S.
Male
,
Phys. C: Supercond.
162-164
,
1171
(
1989
).
72.
E.
Babić
,
M.
Prester
,
D.
Babić
,
P.
Nozar
,
P.
Šastný
, and
F.
Matacotta
,
Solid State Commun.
80
,
855
(
1991
).
73.
P.
England
,
T.
Venkatesan
,
X.
Wu
, and
A.
Inam
,
Phys. Rev. B
38
,
7125
(
1988
).
74.
C.
Lebeau
and
J.
Rosenblatt
,
Europhys. Lett.
1
,
313
(
1986
).
You do not currently have access to this content.