This paper follows previous works which investigated the strength of dipolar coupling in two-magnet systems. While those works focused on qualitative analyses, this manuscript elucidates reversal through dipolar coupling culminating in analytical expressions for reversal reliability in identical two-magnet systems. The dipolar field generated by a mono-domain magnetic body can be represented by a tensor containing both longitudinal and perpendicular field components; this field changes orientation and magnitude based on the magnetization of neighboring nanomagnets. While the dipolar field does reduce to its longitudinal component at short time-scales, for slow magnetization reversals, the simple longitudinal field representation greatly underestimates the scope of parameters that ensure reliable coupling. For the first time, analytical models that map the geometric and material parameters required for reliable coupling in two-magnet systems are developed. It is shown that in biaxial nanomagnets, the x̂ and ŷ components of the dipolar field contribute to the coupling, while all three dimensions contribute to the coupling between a pair of uniaxial magnets. Additionally, the ratio of the longitudinal and perpendicular components of the dipolar field is also very important. If the perpendicular components in the dipolar tensor are too large, the nanomagnet pair may come to rest in an undesirable meta-stable state away from the free axis. The analytical models formulated in this manuscript map the minimum and maximum parameters for reliable coupling. Using these models, it is shown that there is a very small range of material parameters which can facilitate reliable coupling between perpendicular-magnetic-anisotropy nanomagnets; hence, in-plane nanomagnets are more suitable for coupled systems.

1.
D.
Nikonov
and
I.
Young
, “
Benchmarking of beyond-CMOS exploratory devices for logic integrated circuits
,”
IEEE J. Explor. Solid-State Comput. Devices Circ.
1
,
3
11
(
2015
).
2.
D. E.
Nikonov
and
I. A.
Young
, “
Overview of beyond-CMOS devices and a uniform methodology for their benchmarking
,”
Proc. IEEE
101
,
2498
2533
(
2013
).
3.
N.
Kani
and
A.
Naeemi
, “
Pipeline design in spintronic circuits
,” in
Proceedings of the 2014 IEEE/ACM International Symposium on Nanoscale Architectures (ACM
,
2014
), pp.
110
115
.
4.
N.
Rangarajan
,
A.
Parthasarathy
,
N.
Kani
, and
S.
Rakheja
, “
Energy-efficient computing with probabilistic magnetic bits–performance modeling and comparison against probabilistic cmos logic
,”
IEEE Trans. Magn.
53
,
3401510
(
2017
).
5.
N.
Kani
,
J. T.
Heron
, and
A.
Naeemi
, “
Strain-mediated magnetization reversal through spin-transfer torque
,”
IEEE Trans. Magn.
53
,
4300808
(
2017
).
6.
S.
Rakheja
and
N.
Kani
, “
Spin pumping driven auto-oscillator for phase-encoded logic-device design and material requirements
,”
AIP Adv.
7
,
055905
(
2017
).
7.
A.
Orlov
,
A.
Imre
,
G.
Csaba
,
L.
Ji
,
W.
Porod
, and
G.
Bernstein
, “
Magnetic quantum-dot cellular automata: Recent developments and prospects
,”
J. Nanoelectron. Optoelectron.
3
,
55
68
(
2008
).
8.
S.
Datta
,
S.
Salahuddin
, and
B.
Behin-Aein
, “
Non-volatile spin switch for boolean and non-boolean logic
,”
Appl. Phys. Lett.
101
,
252411
(
2012
).
9.
V. Q.
Diep
and
S.
Datta
, “
The spin switch oscillator: A new approach based on gain and feedback
,” in Proceedings of the 72nd Annual
Device Research Conference (DRC)
(IEEE,
2014
), pp.
293
294
.
10.
R.
Engel-Herbert
and
T.
Hesjedal
, “
Calculation of the magnetic stray field of a uniaxial magnetic domain
,”
J. Appl. Phys.
97
,
074504
(
2005
).
11.
M. S.
Fashami
,
K.
Munira
,
S.
Bandyopadhyay
,
A. W.
Ghosh
, and
J.
Atulasimha
, “
Switching of dipole coupled multiferroic nanomagnets in the presence of thermal noise: Reliability of nanomagnetic logic
,”
IEEE Trans. Nanotechnol.
12
,
1206
1212
(
2013
).
12.
G.
Bertotti
,
I.
Mayergoyz
,
C.
Serpico
, and
M.
Dimian
, “
Comparison of analytical solutions of landau–lifshitz equation for ‘damping’ and ‘precessional’ switchings
,”
J. Appl. Phys.
93
,
6811
6813
(
2003
).
13.
M.
d'Aquino
,
S.
Perna
,
C.
Serpico
,
G.
Bertotti
, and
I.
Mayergoyz
, “
Analysis of reliable sub-ns spin-torque switching under transverse bias magnetic fields
,”
J. Appl. Phys.
117
,
17B716
(
2015
).
14.
G.
Bertotti
,
I. D.
Mayergoyz
, and
C.
Serpico
, “
Critical fields and pulse durations for precessional switching of thin magnetic films
,” IEEE Trans.
Magn.
39
,
2504
2506
(
2003
).
15.
D.
Xiao
,
M.
Tsoi
, and
Q.
Niu
, “
Minimal field requirement in precessional magnetization switching
,”
J. Appl. Phys.
99
,
013903
(
2006
).
16.
N.
Kani
,
S.
Dutta
, and
A.
Naeemi
, “
Analysis of coupling strength in multi-domain magneto-systems
,”
in Proceedings of the 73rd Annual Device Research Conference (DRC)
(IEEE,
2015
), pp.
111
112
.
17.
N.
Kani
,
S.-C.
Chang
,
S.
Dutta
, and
A.
Naeemi
, “
A model study of an error-free magnetization reversal through dipolar coupling in a two-magnet system
,”
IEEE Trans. Magn.
57
(
2
),
1
2
(
2015
).
18.
D.
Pinna
,
A.
Kent
, and
D.
Stein
, “
Spin-transfer torque magnetization reversal in uniaxial nanomagnets with thermal noise
,”
J. Appl. Phys.
114
,
033901
(
2013
).
19.
D.
Pinna
,
A.
Kent
, and
D.
Stein
, “
Thermally-assisted spin-transfer torque magnetization reversal of uniaxial nanomagnets in energy space
,” IEEE Trans.
Magn.
49
,
3144
3146
(
2013
).
20.
D.
Pinna
,
A. D.
Kent
, and
D. L.
Stein
, “
Thermally assisted spin-transfer torque dynamics in energy space
,”
Phys. Rev. B
88
,
104405
(
2013
).
21.
D.
Pinna
,
D. L.
Stein
, and
A. D.
Kent
, “
Spin-torque oscillators with thermal noise: A constant energy orbit approach
,”
Phys. Rev. B
90
,
174405
(
2014
).
22.
Y.
Xu
,
D. D.
Awschalom
, and
J.
Nitta
,
Handbook of Spintronics
(
Springer Publishing Company
,
Inc
.,
2015
).
23.
C.
Tannous
and
J.
Gieraltowski
, “
The stoner–wohlfarth model of ferromagnetism
,”
Eur. J. Phys.
29
,
475
(
2008
).
24.
M.
Donahue
and
D.
Porter
, “
OOMMF user's guide, version 1.0
,”
Interagency Report No. NISTIR 6376
(National Institute of Standards and Technology, Gaithersburg, MD, 1999).
25.
J. M.
Coey
,
Magnetism and Magnetic Materials
(
Cambridge University Press
,
2010
).
26.
I. D.
Mayergoyz
,
G.
Bertotti
, and
C.
Serpico
,
Nonlinear Magnetization Dynamics in Nanosystems
(
Elsevier
,
2009
).
27.
W. T.
Coffey
and
Y. P.
Kalmykov
, “
Thermal fluctuations of magnetic nanoparticles: Fifty years after brown
,”
J. Appl. Phys.
112
,
121301
(
2012
).
28.
M.
Beleggia
,
M.
De Graef
, and
Y.
Millev
, “
The equivalent ellipsoid of a magnetized body
,”
J. Phys. D: Appl. Phys.
39
,
891
(
2006
).
29.
H.
Liu
,
D.
Bedau
,
J.
Sun
,
S.
Mangin
,
E.
Fullerton
,
J.
Katine
, and
A.
Kent
, “
Dynamics of spin torque switching in all-perpendicular spin valve nanopillars
,”
J. Magn. Magn. Mater.
358–359
,
233
258
(
2014
).
30.
J.
Sun
, “
Spin-current interaction with a monodomain magnetic body: A model study
,”
Phys. Rev. B
62
,
570
(
2000
).
31.
G.
Bertotti
,
I. D.
Mayergoyz
, and
C.
Serpico
, “
Perturbation technique for LLG dynamics in uniformly magnetized bodies subject to rf fields
,” IEEE Trans.
Magn.
38
,
2403
2405
(
2002
).
32.
E.
Boyd
, “
Magnetic anisotropy in single-crystal thin films
,”
IBM J. Res. Develop.
4
,
116
129
(
1960
).
33.
A. J.
Newell
,
W.
Williams
, and
D. J.
Dunlop
, “
A generalization of the demagnetizing tensor for nonuniform magnetization
,”
J. Geophys. Res.: Solid Earth (1978–2012)
98
,
9551
9555
, (
1993
).
34.
F.
Battaglia
and
T. F.
George
, “
Tensors: A guide for undergraduate students
,”
Am. J. Phys.
81
,
498
511
(
2013
).
35.
G.
Bertotti
,
Hysteresis in Magnetism: For Physicists, Materials Scientists, and Engineers
(
Academic Press
,
1998
).
36.
W.
Brown
, Jr.
, “
Thermal fluctuation of fine ferromagnetic particles
,” IEEE Trans.
Magn.
15
,
1196
1208
(
1979
).
37.
W. F.
Brown
, Jr.
, “
Thermal fluctuations of a single-domain particle
,”
J. Appl. Phys.
34
,
1319
1320
(
1963
).
38.
C. W.
Gardiner
 et al.,
Handbook of Stochastic Methods
(
Springer
,
Berlin
,
1985
), Vol.
4
.
39.
N.
Kani
,
S.
Rakheja
, and
A.
Naeemi
, “
A probability-density function approach to capture the stochastic dynamics of the nanomagnet and impact on circuit performance
,”
IEEE Trans. Electron Devices
63
,
4119
4126
(
2016
).
40.
J. C.
Slonczewski
, “
Current-driven excitation of magnetic multilayers
,”
J. Magn. Magn. Mater.
159
,
L1
L7
(
1996
).
41.
L. D.
Landau
and
E.
Lifshitz
, “
On the theory of the dispersion of magnetic permeability in ferromagnetic bodies
,”
Phys. Z. Sowjetunion
8
,
101
114
(
1935
).
42.
T. L.
Gilbert
, “
A phenomenological theory of damping in ferromagnetic materials
,”
IEEE Trans. Magn.
40
,
3443
3449
(
2004
).
43.
L.
Berger
, “
Emission of spin waves by a magnetic multilayer traversed by a current
,”
Phys. Rev. B
54
,
9353
(
1996
).
44.
M.
Stiles
and
J.
Miltat
, “
Spin-transfer torque and dynamics
,” in
Spin Dynamics in Confined Magnetic Structures III, Topics in Applied Physics
, edited by
B.
Hillebrands
and
A.
Thiaville
(
Springer
,
Berlin, Heidelberg
), Vol. 101, pp.
225
308
, see https://link.springer.com/chapter/10.1007%2F10938171_7.
45.
A.
Brataas
,
A. D.
Kent
, and
H.
Ohno
, “
Current-induced torques in magnetic materials
,”
Nat. Mater.
11
,
372
381
(
2012
).
46.
S.
Ament
,
N.
Rangarajan
, and
S.
Rakheja
, “
A practical guide to solving the stochastic Landau-Lifshitz-Gilbert-Slonczewski equation for macrospin dynamics
,” preprint arXiv:1607.04596.
47.
P.
Bonhomme
,
S.
Manipatruni
,
R. M.
Iraei
,
S.
Rakheja
,
S.-C.
Chang
,
D. E.
Nikonov
,
I. A.
Young
, and
A.
Naeemi
, “
Circuit simulation of magnetization dynamics and spin transport
,”
IEEE Trans. Electron Devices
61
(
5
),
1553
1560
(
2014
).
48.
H.
Liu
, “
Spin transfer driven magnetization dynamics in spin valves and magnetic tunnel junctions
,” Ph.D. thesis,
New York University
,
2013
.
49.
N.
Kani
,
A.
Naeemi
, and
S.
Rakheja
, “
Non-monotonic probability of thermal reversal in thin-film biaxial nanomagnets with small energy barriers
,”
AIP Adv.
7
,
056006
(
2017
).
50.
D. E.
Nikonov
,
G. I.
Bourianoff
,
G.
Rowlands
, and
I. N.
Krivorotov
, “
Strategies and tolerances of spin transfer torque switching
,”
J. Appl. Phys.
107
,
113910
(
2010
).
51.
G.
Bertotti
,
C.
Serpico
, and
I.
Mayergoyz
, “
Probabilistic aspects of magnetization relaxation in single-domain nanomagnets
,”
Phys. Rev. Lett.
110
,
147205
(
2013
).
52.
S.
Chikazumi
and
C. D.
Graham
,
Physics of Ferromagnetism 2e
(
Oxford University Press
,
2009
), p. 94.
53.
J. R.
Black
, “
Electromigration-a brief survey and some recent results
,”
IEEE Trans. Electron Devices
16
,
338
347
(
1969
).
54.
S.
Krause
,
G.
Herzog
,
A.
Schlenhoff
,
A.
Sonntag
, and
R.
Wiesendanger
, “
Joule heating and spin-transfer torque investigated on the atomic scale using a spin-polarized scanning tunneling microscope
,”
Phys. Rev. Lett.
107
,
186601
(
2011
).
55.
J.
Sun
,
M.
Gaidis
,
G.
Hu
,
E.
O'Sullivan
,
S.
Brown
,
J.
Nowak
,
P.
Trouilloud
, and
D.
Worledge
, “
High-bias backhopping in nanosecond time-domain spin-torque switches of mgo-based magnetic tunnel junctions
,”
J. Appl. Phys.
105
,
07D109
(
2009
).
56.
T.
Min
,
J.
Sun
,
R.
Beach
,
D.
Tang
, and
P.
Wang
, “
Back-hopping after spin torque transfer induced magnetization switching in magnetic tunneling junction cells
,”
J. Appl. Phys.
105
,
07D126
(
2009
).
57.
A.
Thiaville
,
Y.
Nakatani
,
J.
Miltat
, and
N.
Vernier
, “
Domain wall motion by spin-polarized current: A micromagnetic study
,”
J. Appl. Phys.
95
,
7049
7051
(
2004
).
58.
S.
Mangin
,
D.
Ravelosona
,
J.
Katine
,
M.
Carey
,
B.
Terris
, and
E. E.
Fullerton
, “
Current-induced magnetization reversal in nanopillars with perpendicular anisotropy
,”
Nat. Mater.
5
,
210
215
(
2006
).
59.
H.
Chang
, “
Coupled biaxial films
,”
J. Appl. Phys.
35
,
770
771
(
1964
).
60.
U.
Gradmann
, “
Magnetic surface anisotropies
,”
J. Magn. Magn. Mater.
54–57
,
733
736
(
1986
).
61.
M. F.
Toney
,
E. E.
Marinero
,
M. F.
Doerner
, and
P. M.
Rice
, “
High anisotropy CoPtCrB magnetic recording media
,”
J. Appl. Phys.
94
,
4018
4023
(
2003
).
62.
S.
Ikeda
,
K.
Miura
,
H.
Yamamoto
,
K.
Mizunuma
,
H.
Gan
,
M.
Endo
,
S.
Kanai
,
J.
Hayakawa
,
F.
Matsukura
, and
H.
Ohno
, “
A perpendicular-anisotropy CoFeB–MgO magnetic tunnel junction
,”
Nat. Mater.
9
,
721
724
(
2010
).
63.
L.
Néel
, “
Surface magnetic anisotropy and orientation superstructures
,”
J. Phys. Radium
15
,
225
239
(
1954
).
64.
F.
Den Broeder
,
W.
Hoving
, and
P.
Bloemen
, “
Magnetic anisotropy of multilayers
,”
J. Magn. Magn. Mater.
93
,
562
570
(
1991
).
You do not currently have access to this content.