Minority carrier lifetime (lifetime) measurements are performed on corona-charged silicon wafers by means of Microwave Detected Photoconductivity (MDP). The corona charge is deposited on the front and back sides of oxidized wafers in order to adjust accumulation conditions. Once accumulation is established, interface recombination is suppressed and bulk lifetimes are obtained. Neither contacts nor non-CMOS compatible preparation techniques are required in order to achieve accumulation conditions, which makes the method ideally suited for inline characterization. The novel approach, termed ChargedMDP (CMDP), is used to investigate neutron transmutation doped (NTD) float zone silicon with resistivities ranging from 6.0 to 8.2 kΩ cm. The bulk properties of 150 mm NTD wafers are analyzed in detail by performing measurements of the carrier lifetime and the steady-state photoconductivity at various injection levels. The results are compared with MDP measurements of uncharged wafers as well as to the established charged microwave detected Photoconductance Decay (charge-PCD) method. Besides analyzing whole wafers, CMDP measurements are performed on oxide test-structures on a patterned wafer. Finally, the oxide properties are characterized by means of charge-PCD as well as capacitance-voltage measurements. With CMDP, average bulk lifetimes up to 33.1 ms are measured, whereby significant variations are observed among wafers, which are produced out of the same ingot but oxidized in different furnaces. The observed lifetime variations are assumed to be caused by contaminations, which are introduced during the oxidation process. The results obtained by CMDP were neither accessible by means of conventional MDP measurements of uncharged wafers nor with the established charge-PCD method.

1.
G.
Lutz
,
Nucl. Instrum. Methods Phys. Res., Sect. A
367
,
21
(
1995
).
2.
S. M.
Sze
and
K. K.
Ng
,
Physics of Semiconductor Devices
, 3rd ed. (
John Wiley and Sons, Inc
.,
Hoboken
,
2006
)
3.
D. K.
Schroder
,
IEEE Trans. Electron Devices
44
,
160
(
1997
).
4.
M.
Kunst
and
G.
Beck
,
J. Appl. Phys.
60
,
3558
(
1986
).
5.
K.
Dornich
,
N.
Schüler
,
B.
Berger
, and
J. R.
Niklas
,
Mater. Sci. Eng. B
178
,
676
(
2013
).
6.
W.
Shockley
and
W. T.
Read
,
Phys. Rev.
87
,
835
(
1952
).
9.
D. K.
Schroder
,
Semiconductor Material and Device Characterization
, 3rd ed. (
John Wiley and Sons, Inc
.,
Hoboken
,
2006
).
10.
S. K.
Pang
and
A.
Rohatgi
,
J. Appl. Phys.
74
,
5554
(
1993
).
11.
E.
Yablonovitch
,
D. L.
Allara
,
C. C.
Chang
,
T.
Gmitter
, and
T. B.
Bright
,
Phys. Rev. Lett.
57
,
249
(
1986
).
12.
H.
Takato
,
I.
Sakata
, and
R.
Shimokawa
,
Jpn. J. Appl. Phys., Part 1
40
,
1003
(
2001
).
13.
T. S.
Horányi
,
T.
Pavelka
, and
P.
Tüttö
,
Appl. Surf. Sci.
63
,
306
(
1993
).
14.
G.
Dingemans
and
W. M. M.
Kessels
,
J. Vac. Sci. Technol. A
30
,
040802
(
2012
).
15.
M. L.
Polignano
,
A. P.
Caricato
,
A.
Modelli
, and
R.
Zonca
,
J. Electrochem. Soc.
147
,
1577
(
2000
).
16.
F.
Wünsch
,
N.
Alonso-Vante
, and
H.
Tributsch
,
Phys. Chem., Chem. Phys.
5
,
3984
(
2003
).
17.
R. B. M.
Girisch
,
R. P.
Mertens
, and
R. F.
de Keersmaecker
,
IEEE Trans. Electron Devices
35
,
203
(
1988
).
18.
F.
Wünsch
,
G.
Schlichthörl
, and
H.
Tributsch
,
J. Phys. D: Appl. Phys.
26
,
2041
(
1993
).
19.
B.
Hoex
,
S. B. S.
Heil
,
E.
Langereis
,
M. C. M.
van de Sanden
, and
W. M. M.
Kessels
,
Appl. Phys. Lett.
89
,
042112
(
2006
).
20.
J.
Schmidt
and
A. G.
Aberle
,
J. Appl. Phys.
81
,
6186
(
1997
).
21.
M.
Schöfthaler
,
R.
Brendel
,
G.
Langguth
, and
J. H.
Werner
, in
Proceedings of the Conference Record of the IEEE Photovoltaic Specialists Conference
2
,
1509
(
1994
).
22.
T.
Pavelka
,
A.
Pap
,
P.
Kenesei
,
M.
Varga
,
F.
Novinics
,
M.
Tallian
,
G.
Borionetti
,
G.
Guaglio
,
M.
Pfeffer
, and
E.
Don
,
ECS Trans.
25
,
129
(
2009
).
23.
N.
Schüler
,
T.
Hahn
,
K.
Dornich
, and
J. R.
Niklas
,
Solid State Phenom.
156–158
,
241
(
2010
).
24.
J.
Härkönen
,
E.
Tuominen
,
K.
Lassila-Perini
,
M.
Palokangas
,
M.
Yli-Koski
,
V.
Ovchinnikov
,
P.
Heikkilä
,
L.
Palmu
, and
S.
Kallijärvi
,
Nucl. Instrum. Methods Phys. Res., Sect. A
485
,
159
(
2002
).
25.
R. A.
Sinton
,
A.
Cuevas
, and
M.
Stuckings
, in
Proceedings of the Conference Record of the IEEE Photovoltaic Specialists Conference
(
1996
), Vol.
457
.
26.
B.
Berger
,
N.
Schüler
,
S.
Anger
,
B.
Gründig-Wendrock
,
J. R.
Niklas
, and
K.
Dornich
,
Phys. Status Solidi A
208
,
769
(
2011
).
27.
P. M.
Jordan
,
D. K.
Simon
,
T.
Mikolajick
, and
I.
Dirnstorfer
,
Appl. Phys. Lett.
106
,
061602
(
2015
).
28.
M.
Rommel
,
M.
Groß
,
L.
Frey
,
A. J.
Bauer
, and
H.
Ryssel
,
ECS Proc.
2005-10
,
113
(
2005
).
29.
E. H.
Nicollian
and
J. R.
Brews
,
MOS (Metal Oxide Semiconductor) Physics and Technology
(
Wiley-Interscience Publication
,
New York
,
1982
)
30.
E.
Gatti
and
P.
Rehak
,
Nucl. Instrum. Methods Phys. Res., Sect. A
541
,
47
(
2005
).
31.
W.
von Ammon
,
Nucl. Instrum. Methods Phys. Res., Sect. B
63
,
95
(
1992
).
32.
N.
Schüler
,
S.
Anger
,
K.
Dornich
,
J. R.
Niklas
, and
K.
Bothe
,
Sol. Energy Mater. Sol. Cells
98
,
245
(
2012
).
33.
N.
Schüler
,
T.
Hahn
,
S.
Schmerler
,
S.
Hahn
,
K.
Dornich
, and
J. R.
Niklas
,
J. Appl. Phys.
107
,
064901
(
2010
).
34.
K.
Lauer
,
A.
Laades
,
H.
Übensee
,
H.
Metzner
, and
A.
Lawerenz
,
J. Appl. Phys.
104
,
104503
(
2008
).
35.
H.-J.
Schulze
and
B. O.
Kolbesen
,
Solid State Electron.
42
,
2187
(
1998
).
36.
M.
Rommel
,
A. J.
Bauer
, and
H.
Ryssel
,
Microelectron. Rel.
47
,
673
(
2007
).
You do not currently have access to this content.