It is assumed that heat-assisted magnetic recording is the recording technique of the future. For pure hard magnetic grains in high density media with an average diameter of 5 nm and a height of 10 nm, the switching probability is not sufficiently high for the use in bit-patterned media. Using a bilayer structure with 50% hard magnetic material with low Curie temperature and 50% soft magnetic material with high Curie temperature to obtain more than 99.2% switching probability leads to very large jitter. We propose an optimized material composition to reach a switching probability of Pswitch > 99.2% and simultaneously achieve the narrow transition jitter of pure hard magnetic material. Simulations with a continuous laser spot were performed with the atomistic simulation program VAMPIRE for a single cylindrical recording grain with a diameter of 5 nm and a height of 10 nm. Different configurations of soft magnetic material and different amounts of hard and soft magnetic material were tested and discussed. Within our analysis, a composition with 20% soft magnetic and 80% hard magnetic material reaches the best results with a switching probability Pswitch > 99.2%, an off-track jitter parameter σoff,80∕20 = 0.46 nm and a down-track jitter parameter σdown,80∕20 = 0.49 nm.

1.
H.
Kobayashi
,
M.
Tanaka
,
H.
Machida
,
T.
Yano
, and
U. M.
Hwang
, “
Thermomagnetic recording
,” U.S. Patent No. 4,466,004 (
1984
).
2.
C.
Mee
and
G.
Fan
, “
A proposed beam-addressable memory
,”
IEEE Trans. Magn.
3
(
1
),
72
76
(
1967
).
3.
R. E.
Rottmayer
,
S.
Batra
,
D.
Buechel
,
W. A.
Challener
,
J.
Hohlfeld
,
Y.
Kubota
,
L.
Li
,
B.
Lu
,
C.
Mihalcea
,
K.
Mountfield
, and
others
. “
Heat-assisted magnetic recording
,”
IEEE Trans. Magn.
42
(
10
),
2417
2421
(
2006
).
4.
M. H.
Kryder
,
E. C.
Gage
,
T. W.
McDaniel
,
W. A.
Challener
,
R. E.
Rottmayer
,
G.
Ju
,
Y.-T.
Hsia
, and
M.
Fatih Erden
, “
Heat assisted magnetic recording
,”
Proc. IEEE
96
(
11
),
1810
1835
(
2008
).
5.
D.
Suess
,
C.
Vogler
,
C.
Abert
,
F.
Bruckner
,
R.
Windl
,
L.
Breth
, and
J.
Fidler
, “
Fundamental limits in heat-assisted magnetic recording and methods to overcome it with exchange spring structures
,”
J. Appl. Phys.
117
(
16
),
163913
(
2015
).
6.
D.
Suess
and
T.
Schrefl
, “
Breaking the thermally induced write error in heat assisted recording by using low and high Tc materials
,”
Appl. Phys. Lett.
102
(
16
),
162405
(
2013
).
7.
K. R.
Coffey
,
J.-U.
Thiele
, and
D. K.
Weller
, “
Thermal spring' magnetic recording media for writing using magnetic and thermal gradients
,” U.S. Patent No. 6,881,497 (
2005
).
8.
C.
Vogler
,
C.
Abert
,
F.
Bruckner
,
D.
Suess
, and
D.
Praetorius
, “
Areal density optimizations for heat-assisted magnetic recording of high-density media
,”
J. Appl. Phys.
119
(
22
),
223903
(
2016
).
9.
R. F. L.
Evans
,
W. J.
Fan
,
P.
Chureemart
,
T. A.
Ostler
,
M. O. A.
Ellis
, and
R. W.
Chantrell
, “
Atomistic spin model simulations of magnetic nanomaterials
,”
J. Phys.: Condens. Matter
26
(
10
),
103202
(
2014
).
10.
J.-G.
Zhu
and
H.
Li
, “
Understanding signal and noise in heat assisted magnetic recording
,”
IEEE Trans. Magn.
49
(
2
),
765
772
(
2013
).
11.
J.-G.
Jimmy Zhu
and
H.
Li
, “
Medium optimization for lowering head field and heating requirements in heat-assisted magnetic recording
,”
IEEE Magn. Lett.
6
,
4500104
(
2015
).
12.
C.
Vogler
,
C.
Abert
,
F.
Bruckner
,
D.
Suess
, and
D.
Praetorius
, “
Basic noise mechanisms of heat-assisted-magnetic recording
,”
J. Appl. Phys.
120
(
15
),
153901
(
2016
).
13.
T.
Schrefl
,
J.
Fidler
, and
H.
Kronmüller
, “
Remanence and coercivity in isotropic nanocrystalline permanent magnets
,”
Phys. Rev. B
49
(
9
),
6100
(
1994
).
14.
D.
Suess
, “
Micromagnetics of exchange spring media: Optimization and limits
,”
J. Magn. Magn. Mater.
308
(
2
),
183
197
(
2007
).
15.
L. S.
Huang
,
J. F.
Hu
, and
J. S.
Chen
, “
Critical Fe thickness for effective coercivity reduction in FePt/Fe exchange-coupled bilayer
,”
J. Magn. Magn. Mater.
324
(
6
),
1242
1247
(
2012
).
You do not currently have access to this content.