We report a combined experimental and theoretical study to ascertain carbon solubility in nickel nanoparticles embedded into a carbon matrix via the one-pot method. This original approach is based on the experimental characterization of the magnetic properties of Ni at room temperature and Monte Carlo simulations used to calculate the magnetization as a function of C content in Ni nanoparticles. Other commonly used experimental methods fail to accurately determine the chemical analysis of these types of nanoparticles. Thus, we could assess the C content within Ni nanoparticles and it decreases from 8 to around 4 at. % with increasing temperature during the synthesis. This behavior could be related to the catalytic transformation of dissolved C in the Ni particles into graphite layers surrounding the particles at high temperature. The proposed approach is original and easy to implement experimentally since only magnetization measurements at room temperature are needed. Moreover, it can be extended to other types of magnetic nanoparticles dissolving carbon.

1.
J.-H.
Hwang
,
V. P.
Dravid
,
M. H.
Teng
,
J. J.
Host
,
B. R.
Elliott
,
D. L.
Johnson
, and
T. O.
Mason
,
J. Mater. Res.
12
,
1076
(
1997
).
2.
X.-C.
Sun
and
X.-L.
Dong
,
Mater. Res. Bull.
37
,
991
(
2002
).
3.
R.
Campesi
,
V.
Paul-Boncour
,
F.
Cuevas
,
E.
Leroy
,
R.
Gadiou
,
C.
Vix-Guterl
, and
M.
Latroche
,
J. Phys. Chem. C
113
,
16921
(
2009
).
4.
H. T.
Zhang
,
G.
Wu
,
X. H.
Chen
, and
X. G.
Qiu
,
Mater. Res. Bull.
41
,
495
(
2006
).
5.
J.
Kudrnovský
,
V.
Drchal
, and
P.
Bruno
,
Phys. Rev. B
77
,
224422
(
2008
).
6.
M.
Kumar
, in
Carbon Nanotubes–Synthesis Characterisation Application
, edited by
S.
Yellampalli
(
InTech
,
Rijeka
,
2011
).
7.
C. P.
Deck
and
K.
Vecchio
,
Carbon
44
,
267
(
2006
).
8.
J.
Robertson
,
J. Mater. Chem.
22
,
19858
(
2012
).
9.
V. K.
Portnoi
,
A. V.
Leonov
,
S. N.
Mudretsova
, and
S. A.
Fedotov
,
Phys. Met. Metallogr.
109
,
153
(
2010
).
10.
Y.
Magnin
,
A.
Zappelli
,
H.
Amara
,
F.
Ducastelle
, and
C.
Bichara
,
Phys. Rev. Lett.
115
,
205502
(
2015
).
11.
M.
He
,
Y.
Magnin
,
H.
Amara
,
H.
Jiang
,
H.
Cui
,
F.
Fossard
,
A.
Castan
,
E.
Kauppinen
,
A.
Loiseau
, and
C.
Bichara
,
Carbon
113
,
231
(
2017
).
12.
J.-M.
Aguiar-Hualde
,
Y.
Magnin
,
H.
Amara
, and
C.
Bichara
,
Carbon
120
,
226
(
2017
).
13.
Y.
Zhai
,
Y.
Dou
,
X.
Liu
,
B.
Tu
, and
D.
Zhao
,
J. Mater. Chem.
19
,
3292
(
2009
).
14.
A.
Martínez de Yuso
,
J.-M.
Le Meins
,
Y.
Oumellal
,
V.
Paul-Boncour
,
C.
Zlotea
, and
C. M.
Ghimbeu
,
J. Nanopart. Res.
18
,
380
(
2016
).
15.
A.
Martinez de Yuso
,
Y.
Oumellal
,
C.
Zlotea
,
L.
Vidal
, and
C. M.
Ghimbeu
,
Nano-Struct. Nano-Objects
9
,
1
(
2017
).
16.
C. M.
Ghimbeu
,
A.
Puscasu
,
A. M.
de Yuso
,
C.
Zlotea
,
Y.
Oumellal
,
M.
Latroche
, and
C.
Vix-Guterl
,
Microporous Mesoporous Mater.
223
,
79
(
2016
).
17.
C. M.
Ghimbeu
,
J.-M. L.
Meins
,
C.
Zlotea
,
L.
Vidal
,
G.
Schrodj
,
M.
Latroche
, and
C.
Vix-Guterl
,
Carbon
67
,
260
(
2014
).
18.
J.
Hoekstra
,
A. M.
Beale
,
F.
Soulimani
,
M.
Versluijs-Helder
,
J. W.
Geus
, and
L. W.
Jenneskens
,
J. Phys. Chem. C
119
,
10653
(
2015
).
19.
W.
Weisweiler
,
N.
Subramanian
, and
B.
Terwiesch
,
Carbon
9
,
755
(
1971
).
20.
A.
Ōya
and
H.
Marsh
,
J. Mater. Sci.
17
,
309
(
1982
).
21.
C.
Bellouard
,
G.
Mercier
,
S.
Cahen
,
J.
Ghanbaja
,
G.
Medjahdi
,
J.
Gleize
,
G.
Lamura
,
C.
Hérold
, and
B.
Vigolo
,
J. Magn. Magn. Mater.
411
,
39
(
2016
).
22.
H.
Amara
,
J.-M.
Roussel
,
C.
Bichara
,
J.-P.
Gaspard
, and
F.
Ducastelle
,
Phys. Rev. B
79
,
014109
(
2009
).
23.
R. S.
Weatherup
,
H.
Amara
,
R.
Blume
,
B.
Dlubak
,
B. C.
Bayer
,
M.
Diarra
,
M.
Bahri
,
A.
Cabrero-Vilatela
,
S.
Caneva
,
P. R.
Kidambi
,
M.-B.
Martin
,
C.
Deranlot
,
P.
Seneor
,
R.
Schloegl
,
F.
Ducastelle
,
C.
Bichara
, and
S.
Hofmann
,
J. Am. Chem. Soc.
136
,
13698
(
2014
).
24.
M.
Diarra
,
A.
Zappelli
,
H.
Amara
,
F.
Ducastelle
, and
C.
Bichara
,
Phys. Rev. Lett.
109
,
185501
(
2012
).
25.
M.
Mrovec
,
D.
Nguyen-Manh
,
C.
Elsässer
, and
P.
Gumbsch
,
Phys. Rev. Lett.
106
,
246402
(
2011
).
26.
D. W.
Boukhvalov
,
Y. N.
Gornostyrev
,
M. I.
Katsnelson
, and
A. I.
Lichtenstein
,
Phys. Rev. Lett.
99
,
247205
(
2007
).
27.
S.
Karoui
,
H.
Amara
,
B.
Legrand
, and
F.
Ducastelle
,
J. Phys. Condens. Matter
25
,
056005
(
2013
).
28.
C. M.
Fang
,
M. H. F.
Sluiter
,
M. A.
van Huis
, and
H. W.
Zandbergen
,
Phys. Rev. B
86
,
134114
(
2012
).
29.
P.
Yu
,
X. F.
Jin
,
J.
Kudrnovský
,
D. S.
Wang
, and
P.
Bruno
,
Phys. Rev. B
77
,
054431
(
2008
).
30.
D. J.
Siegel
,
M.
van Schilfgaarde
, and
J. C.
Hamilton
,
Phys. Rev. Lett.
92
,
086101
(
2004
).
31.
F. C.
Schwerer
,
J. Appl. Phys.
40
,
2705
(
1969
).
32.
A.
Cottrell
,
Chemical Bonding in Transition Metal Carbides
(
The Institute of Materials
,
London
,
1995
).
33.
D. J.
Siegel
and
J. C.
Hamilton
,
Phys. Rev. B
68
,
094105
(
2003
).
34.
P.
Giannozzi
,
S.
Baroni
,
N.
Bonini
,
M.
Calandra
,
R.
Car
,
C.
Cavazzoni
,
D.
Ceresoli
,
G. L.
Chiarotti
,
M.
Cococcioni
,
I.
Dabo
,
A.
Dal Corso
,
S.
de Gironcoli
,
S.
Fabris
,
G.
Fratesi
,
R.
Gebauer
,
U.
Gerstmann
,
C.
Gougoussis
,
A.
Kokalj
,
M.
Lazzeri
,
L.
Martin-Samos
,
N.
Marzari
,
F.
Mauri
,
R.
Mazzarello
,
S.
Paolini
,
A.
Pasquarello
,
L.
Paulatto
,
C.
Sbraccia
,
S.
Scandolo
,
G.
Sclauzero
,
A. P.
Seitsonen
,
A.
Smogunov
,
P.
Umari
, and
R. M.
Wentzcovitch
,
J. Phys. Condens. Matter
21
,
395502
(
2009
).
35.
P. E.
Blöchl
,
Phys. Rev. B
50
,
17953
(
1994
).
36.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
37.
I. R.
Shein
,
N. I.
Medvedeva
, and
A. L.
Ivanovskii
,
Phys. Rev. B: Condens. Matter
371
,
126
(
2006
).
38.
X.
Hu
,
T.
Björkman
,
H.
Lipsanen
,
L.
Sun
, and
A. V.
Krasheninnikov
,
J. Phys. Chem. Lett.
6
,
3263
(
2015
).
39.
C. M.
Ghimbeu
,
M.
Sopronyi
,
F.
Sima
,
L.
Delmotte
,
C.
Vaulot
,
C.
Zlotea
,
V.
Paul-Boncour
, and
J.-M.
Le Meins
,
Nanoscale
7
,
10111
(
2015
).
40.
C.
Pardanaud
,
C.
Martin
,
P.
Roubin
,
G.
Giacometti
,
C.
Hopf
,
T.
Schwarz-Selinger
, and
W.
Jacob
,
Diamond Relat. Mater.
34
,
100
(
2013
).
41.
C.
Zlotea
,
C. M.
Ghimbeu
,
Y.
Oumellal
,
J.-C.
Crivello
,
C.
Vix-Guterl
, and
M.
Latroche
,
Nanoscale
7
,
15469
(
2015
).
42.
P.
Dibandjo
,
C.
Zlotea
,
R.
Gadiou
,
C. M.
Ghimbeu
,
F.
Cuevas
,
M.
Latroche
,
E.
Leroy
, and
C.
Vix-Guterl
,
Int. J. Hydrogen Energy
38
,
952
(
2013
).
43.
M.
Sevilla
and
A. B.
Fuertes
,
Carbon
56
,
155
(
2013
).
44.
W. H.
Zhong
,
C. Q.
Sun
, and
S.
Li
,
Solid State Commun.
130
,
603
(
2004
).
45.
L.
Yue
,
R.
Sabiryanov
,
E. M.
Kirkpatrick
, and
D. L.
Leslie-Pelecky
,
Phys. Rev. B
62
,
8969
(
2000
).
46.
T.
Ishizaki
,
K.
Yatsugi
, and
K.
Akedo
,
Nanomaterials
6
,
172
(
2016
).
47.
J. J.
Lander
,
H. E.
Kern
, and
A. L.
Beach
,
J. Appl. Phys.
23
,
1305
(
1952
).

Supplementary Material

You do not currently have access to this content.