The absorbed laser energy of a femtosecond laser pulse in a transparent material induces a warm dense matter region relaxation of which may lead to structural modifications in the surrounding cold matter. The modeling of the thermo-elasto-plastic material response is addressed to predict such modifications. It has been developed in a 2D plane geometry and implemented in a hydrodynamic Lagrangian code. The particular case of a tightly focused laser beam in the bulk of fused silica is considered as a first application of the proposed general model. It is shown that the warm dense matter relaxation, influenced by the elasto-plastic behavior of the surrounding cold matter, generates both strong shock and rarefaction waves. Permanent deformations appear in the surrounding solid matter if the induced stress becomes larger than the yield strength. This interaction results in the formation of a sub-micrometric cavity surrounded by an overdense area. This approach also allows one to predict regions where cracks may form. The present modeling can be used to design nanostructures induced by short laser pulses.

1.
K. M.
Davis
,
K.
Miura
,
N.
Sugimoto
, and
K.
Hirao
,
Opt. Lett.
21
,
1729
(
1996
).
2.
Y.
Shimotsuma
,
P. G.
Kazansky
,
J.
Qiu
, and
K.
Hirao
,
Phys. Rev. Lett.
91
,
247405
(
2003
).
3.
R. R.
Gattass
and
E.
Mazur
,
Nat. Photonics
2
,
219
(
2008
).
4.
J.
Gottmann
,
D.
Wortmann
, and
M.
Hörstmann-Jungemann
,
Appl. Surf. Sci.
255
,
5641
(
2009
).
5.
G.
Cheng
,
K.
Mishchik
,
C.
Mauclair
,
E.
Audouard
, and
R.
Stoian
,
Opt. Express
17
,
9515
(
2009
).
6.
J.
Bonse
,
J.
Krüger
,
S.
Höhm
, and
A.
Rosenfeld
,
J. Laser Appl.
24
,
042006
(
2012
).
7.
S.
Richter
,
A.
Plech
,
M.
Steinert
,
M.
Heinrich
,
S.
Döring
,
F.
Zimmermann
,
U.
Peschel
,
E. B.
Kley
,
A.
Tünnermann
, and
S.
Nolte
,
Laser Photonics Rev.
6
,
787
(
2012
).
8.
R.
Buividas
,
M.
Mikutis
, and
S.
Juodkazis
,
Prog. Quantum Electron.
38
,
119
(
2014
).
9.
Y.
Liao
,
J.
Ni
,
L.
Qiao
,
M.
Huang
,
Y.
Bellouard
,
K.
Sugioka
, and
Y.
Cheng
,
Optica
2
,
329
(
2015
).
10.
F.
Courvoisier
,
J.
Zhang
,
M. K.
Bhuyan
,
M.
Jacquot
, and
J. M.
Dudley
,
Appl. Phys. A
112
,
29
(
2013
).
11.
A.
Courvoisier
,
M. J.
Booth
, and
P. S.
Salter
,
Appl. Phys. Lett.
109
,
031109
(
2016
).
12.
Y.
Bellouard
,
A.
Champion
,
B.
McMillen
,
S.
Mukherjee
,
R. R.
Thomson
,
C.
Pépin
,
P.
Gillet
, and
Y.
Cheng
,
Optica
3
,
1285
(
2016
).
13.
S.
Juodkazis
,
A. V.
Rode
,
E. G.
Gamaly
,
S.
Matsuo
, and
H.
Misawa
,
Appl. Phys. B
77
,
361
(
2003
).
14.
S.
Juodkazis
,
K.
Nishimura
,
S.
Tanaka
,
H.
Misawa
,
E.
Gamaly
,
B.
Luther-Davies
,
L.
Hallo
,
P.
Nicolaï
, and
V. T.
Tikhonchuk
,
Phys. Rev. Lett.
96
,
166101
(
2006
).
15.
E. G.
Gamaly
,
S.
Juodkazis
,
H.
Misawa
,
B.
Luther-Davies
,
A.
Rode
,
L.
Hallo
,
P.
Nicola
, and
V. T.
Tikhonchuk
,
Curr. Appl. Phys.
8
,
412
(
2008
).
16.
E. G.
Gamaly
,
S.
Juodkazis
,
K.
Nishimura
,
H.
Misawa
,
B.
Luther-Davies
,
L.
Hallo
,
P.
Nicolai
, and
V. T.
Tikhonchuk
,
Phys. Rev. B
73
,
214101
(
2006
).
17.
L.
Hallo
,
A.
Bourgeade
,
V. T.
Tikhonchuk
,
C.
Mézel
, and
J.
Breil
,
Phys. Rev. B
76
,
024101
(
2007
).
18.
M.
Sakakura
,
M.
Terazima
,
Y.
Shimotsuma
,
K.
Miura
, and
K.
Hirao
,
Opt. Express
15
,
5674
(
2007
).
19.
C.
Mézel
,
L.
Hallo
,
A.
Bourgeade
,
D.
Hébert
,
V. T.
Tikhonchuk
,
B.
Chimier
,
B.
Nkonga
,
G.
Schurtz
, and
G.
Travaillé
,
Phys. Plasmas
15
,
093504
(
2008
).
20.
D.
Hébert
,
L.
Hallo
,
L.
Voisin
,
T.
Desanlis
,
A.
Galtié
,
B.
Bicrel
,
C.
Maunier
,
P.
Mercier
, and
G.
Duchateau
,
J. Appl. Phys.
109
,
123527
(
2011
).
21.
N. M.
Bulgakova
,
V. P.
Zhukov
,
S. V.
Sonina
, and
Y. P.
Meshcheryakov
,
J. Appl. Phys.
118
,
233108
(
2015
).
22.
S.
Najafi
,
R.
Massudi
,
A.
Ajami
,
C. S. R.
Nathala
,
W.
Husinsky
, and
A. S.
Arabanian
,
J. Appl. Phys.
120
,
153102
(
2016
).
23.
R. M.
Christensen
,
Theory of Viscoelasticity
(
Academic Press
,
1971
).
24.
M. A.
Meyers
and
K. K.
Chawla
,
Mechanical Behavior of Materials
(
Cambridge University Press
,
2009
).
25.
M. L.
Wilkins
,
Methods in Computational Physics, Volume 3, Chapter Calculation of Elastic-Plastic Flow
(
Academic Press
,
1964
), pp.
211
263
.
26.
J.
Breil
,
S.
Galera
, and
P. H.
Maire
,
Comput. Fluids
46
,
161
(
2011
).
27.
P. H.
Maire
,
R.
Abgrall
,
J.
Breil
,
R.
Loubere
, and
B.
Rebourcet
,
J. Comput. Phys.
235
,
626
(
2013
).
28.
F.
Irgens
,
Continuum Mechanics
(
Springer
,
2008
).
29.
R.
von Mises
,
Math. Phys.
4
,
582
(
1913
).
30.
J. L.
Fanchon
,
Guide De Mecanique: Sciences Et Technologies Industrielles
(
Nathan
,
2001
).
31.
D.
Royer
and
E.
Dieulesaint
,
Elastic Waves in Solids
(
Springer
,
2000
).
32.
J. C.
Boettger
, “
SESAME equation of state number 7386, fused quartz
,”
Los Alamos National Laboratory Report No. LA-11488-MS
,
1989
.
33.
G.
Kermouche
,
E.
Barthel
,
D.
Vandembroucq
, and
P.
Dubujet
,
Acta Mater.
56
,
3222
(
2008
).
34.
Y.
Michel
,
J.-M.
Chevalier
,
C.
Durin
,
C.
Espinosa
,
F.
Malaise
, and
J.-J.
Barrau
,
J. Phys. IV France
134
,
1077
(
2006
).
35.
A. E.
Gleason
,
C. A.
Bolme
,
H. J.
Lee
,
B. N. E.
Galtier
,
D.
Milathianaki
,
J.
Hawreliak
,
R. G.
Kraus
,
J. H.
Eggert
,
D. E.
Fratanduono
,
G. W.
Collins
,
R.
Sandberg
,
W.
Yang
, and
W. L.
Mao
,
Nat. Commun.
6
,
8191
(
2015
).
36.
Z.
Rosenberg
,
J. Appl. Phys.
74
,
752
(
1993
).
37.
J. R.
Asay
and
M.
Shahinpoor
,
High Pressure Shock Compression of Solids
(
Springer
,
1993
).
38.
C. A.
Coulomb
,
Mem. Acad. Roy. Div. Sav.
7
,
343
(
1776
).
39.
H.
Tresca
,
C. R. Acad. Sci. Paris
59
,
754
(
1864
).
40.
G. I.
Taylor
and
H.
Quinney
,
Proc. R. Soc. A
143
,
307
(
1934
).
41.
A. A.
Griffith
,
Philos. Trans. R. Soc. London, Ser. A
221
,
163
(
1921
).
42.
D.
Spenlé
and
R.
Gourhant
, in
Guide Du Calcul En Mécanique
, edited by
Hachette
(
Hachette
,
2003
).
43.
A.
Pedone
,
M. C.
Menziani
, and
A. N.
Cormack
,
J. Phys. Chem. C
119
,
25499
(
2015
).
44.
H.
Rinne
,
The Weibull Distribution: A Handbook
(
CRC Press
,
2008
).
45.
S.
Reyné
,
G.
Duchateau
,
L.
Hallo
,
J. Y.
Natoli
, and
L.
Lamaignère
,
Appl. Phys. A
119
,
1317
(
2015
).
46.
F.
Zimmermann
,
A.
Plech
,
S.
Richter
,
A.
Tünnermann
, and
S.
Nolte
,
Laser Photonics Rev.
10
,
327
(
2016
).
47.
Y. P.
Meshcheryakov
,
M. V.
Shugaev
,
T.
Mattle
,
T.
Lippert
, and
N. M.
Bulgakova
,
Appl. Phys. A
113
,
521
(
2013
).
48.
R. H. G.
Parry
,
Mohr Circles, Stress Paths and Geotechnics
, 2nd ed. (
Taylor & Francis
,
2004
).
You do not currently have access to this content.