Selective area growth of InGaAs inside highly confined trenches on a pre-patterned (001) Si substrate has the potential of achieving a high III-V crystal quality due to high aspect ratio trapping for improved device functionalities in Si microelectronics. If the trench width is in the range of the hetero-layer thickness, the relaxation mechanism of the mismatched III-V layer is no longer isotropic, which has a strong impact on the device fabrication and performance if not controlled well. The hetero-epitaxial nucleation of InxGa1-xAs on Si can be simplified by using a binary nucleation buffer such as GaAs. A pronounced anisotropy in strain release was observed for the growth of InxGa1-xAs on a fully relaxed GaAs buffer with a (001) surface inside 20 and 100 nm wide trenches, exploring the full composition range from GaAs to InAs. Perpendicular to the trench orientation (direction of high confinement), the strain release in InxGa1-xAs is very efficiently caused by elastic relaxation without defect formation, although a small compressive force is still induced by the trench side walls. In contrast, the strain release along the trenches is governed by plastic relaxation once the vertical film thickness has clearly exceeded the critical layer thickness. On the other hand, the monolithic deposition of mismatched InxGa1-xAs directly into a V-shaped trench bottom with {111} Si planes leads instantly to a pronounced nucleation of misfit dislocations along the {111} Si/III-V interfaces. In this case, elastic relaxation no longer plays a role as the strain release is ensured by plastic relaxation in both directions. Hence, using a ternary seed layer facilitates the integration of InxGa1-xAs covering the full composition range.

1.
Alamo
,
J. A.
, “
Nanometre-scale electronics with III-V compound semiconductors
,”
Nature
479
,
317
323
(
2011
).
2.
Borg
,
M.
,
Schmid
,
H.
,
Moselund
,
K. E.
,
Cutaia
,
D.
, and
Riel
,
H.
, “
Mechanisms of template-assisted selective epitaxy of InAs nanowires on Si
,”
J. Appl. Phys.
117
,
144303
(
2015
).
3.
Ayers
,
J. E.
,
Heteroepitaxy of Semiconductors
(
CRC Press
,
2007
).
4.
Duriez
,
B.
,
Vellianitis
,
G.
,
Dal
,
M. V.
,
Doornbos
,
G.
,
Oxland
,
R.
,
Bhuwalka
,
K.
,
Holland
,
M.
,
Chang
,
Y. S.
,
Hsieh
,
C. H.
,
Yin
,
K. M.
,
See
,
C. Y.
,
Passlack
,
M.
, and
Diaz
,
C. H.
, “
Scaled p-channel Ge FinFET with optimized gate stack and record performance
,”
IEEE Int. Electron Devices Meet.
2013
,
522
.
5.
Fewster
,
P. F.
,
X-Ray Scattering from Semiconductors
(
Imperial College Press
,
2003
).
6.
Fitzgerald
,
E.
and
Chand
,
N.
, “
Epitaxial necking in GaAs grown on pre-patterned Si substrate
,”
J. Electron. Mater.
20
(
10
),
839
(
1991
).
7.
Fitzgerald
,
E. A.
,
Kirchner
,
P. D.
,
Proano
,
R.
,
Pettit
,
G. D.
,
Woodall
,
J. M.
, and
Ast
,
D. G.
, “
Elimination of interface defects in mismatched epilayers by a reduction in growth area
,”
Appl. Phys. Lett.
52
(
18
),
1496
(
1988
).
8.
Fitzgerald
,
E. A.
,
Watson
,
G. P.
, and
Ast
,
D. G.
, “
Nucleation mechanisms and the elimination of misfit dislocations at mismatched interfaces by reduction in growth area
,”
J. Appl. Phys.
65
(
6
),
2220
(
1989
).
9.
Glas
,
F.
, “
Critical dimensions for the plastic relaxation of strained axial heterostructures in free-standing nanowires
,”
Phys. Rev. B
74
,
121302(R)
(
2006
).
10.
Guo
,
W.
,
Date
,
L.
,
Pena
,
V.
,
Bao
,
X.
,
Merckling
,
C.
,
Waldron
,
N.
,
Collaert
,
N.
,
Caymax
,
M.
,
Sanchez
,
E.
,
Vancoille
,
E.
,
Barla
,
K.
,
Thean
,
A.
,
Eyben
,
P.
, and
Vandervorst
,
W.
, “
Selective metal-organic chemical vapor deposition growth of high quality GaAs on Si(001)
,”
Appl. Phys. Lett.
105
,
062101
(
2014
).
11.
Heyns
,
M. M.
,
Meuris
,
M. M.
, and
Caymax
,
M.
, “
Ge and III/V as enabling materials for future CMOS technologies
,”
ECS Trans.
3
(
7
),
511
(
2006
).
12.
Hsueh
,
C.-H.
, “
Analyses of edge effects on residual stresses in films strip/substrate systems
,”
J. Appl. Phys.
88
,
3022
(
2000
).
13.
Jain
,
S.
,
Maes
,
H.
,
Pinardi
,
K.
, and
Wolf
,
I. D.
, “
Stresses and strains in lattice-mismatched stripes, quantum wires, quantum dots, and substrates in Si technology
,”
Appl. Phys. Rev.
79
(
11
),
8145
(
1996
).
14.
Krost
,
A.
,
Heinrichsdorff
,
F.
,
Bimbert
,
D.
, and
Cerva
,
H.
, “
InP on Si(111): Accomodation of lattice mismatch and structural properties
,”
Appl. Phys. Lett.
64
(
7
),
769
(
1994a
).
15.
Krost
,
A.
,
Schnabel
,
B. F.
,
Heinrichsdorff
,
F.
,
Rossow
,
U.
,
Bimberg
,
D.
, and
Cerva
,
H.
, “
Defect reduction in GaAs and InP grown on planar Si(111) and on patterned Si(001) substrates
,”
J. Cryst. Growth
145
,
314
(
1994b
).
16.
Kunert
,
B.
,
Guo
,
W.
,
Mols
,
Y.
,
Tian
,
B.
,
Wang
,
Z.
,
Shi
,
Y.
,
van Thourhout
,
D.
,
Pantouvaki
,
M.
,
van Campenhout
,
J.
,
Langer
,
R.
, and
Barla
,
K.
, “
III/V nano ridge structures for optical applications on patterned 300 mm silicon substrate
,”
Appl. Phys. Lett.
109
,
091101
(
2016
).
17.
Li
,
J. Z.
,
Bai
,
J.
,
Major
,
C.
,
Carroll
,
M.
,
Lochtefeld
,
A.
, and
Shellenbarger
,
Z.
, “
Defect reduction of GaAs/Si epitaxy by aspect ratio trapping
,”
J. Appl. Phys.
103
,
106102
(
2008
).
18.
Li
,
Q.
,
Ng
,
K.
, and
Lau
,
K.
, “
Growing antiphase-domain-free GaAs thin films out of highly ordered planar nanowire arrays on exact (001) silicon
,”
Appl. Phys. Lett.
106
,
072105
(
2015
).
19.
Liang
,
D.
and
Bowers
,
J. E.
, “
Recent progress in lasers on silicon
,”
Nat. Photonics
4
,
511
(
2010
).
20.
Loo
,
R.
,
Hikavyy
,
A.
,
Witters
,
L.
,
Schulze
,
A.
,
Arimura
,
H.
,
Cott
,
D.
,
Mitard
,
J.
,
Porret
,
C.
,
Mertens
,
H.
,
Ryan
,
P.
,
Wall
,
J.
,
Matney
,
K.
,
Wormington
,
M.
,
Favia
,
P.
,
Richard
,
O.
,
Bender
,
H.
,
Thean
,
A.
,
Horiguchi
,
N.
,
Mocuta
,
D.
, and
Collaert
,
N.
, “
Processing technologies for advanced Ge devices
,”
ECS J. Solid State Sci. Technol.
6
(
1
),
P14
(
2017
).
21.
Lourdudoss
,
S.
, “
Heteroepitaxy and selective area heteroepitaxy for silicon photonics
,”
Curr. Opin. Solid State Mater. Sci.
16
,
91
(
2012
).
22.
Lu
,
H.
and
Seabaugh
,
A.
, “
Tunnel field-effect transistors: State-of-the-art
,”
J. Electron Devices Soc.
2
(
4
),
44
49
(
2014
).
23.
Luryi
,
S.
and
Suhir
,
E.
, “
New approach to the high quality epitaxial growth of lattice mismatched materials
,”
Appl. Phys. Lett.
49
,
140
(
1986
).
24.
Matthews
,
J.
,
Blakeslee
,
A.
, and
Mader
,
S.
, “
Use of misfit strain to remove dislocations from epitaxial thin films
,”
Thin Solid Film
33
,
253
(
1976
).
25.
Mitard
,
J.
,
Witters
,
L.
,
Sasaki
,
Y.
,
Arimura
,
H.
,
Schulze
,
A.
,
Loo
,
R.
,
Ragnarsson
,
L.-Å.
,
Hikavyy
,
A.
,
Cott
,
D.
,
Chiarella
,
T.
,
Kubicek
,
S.
,
Mertens
,
H.
,
Ritzenthaler
,
R.
,
Vrancken
,
C.
,
Favia
,
P.
,
Bender
,
H.
,
Horiguchi
,
N.
,
Barla
,
K.
,
Mocuta
,
D.
,
Mocuta
,
A.
,
Collaert
,
N.
, and
Thean
,
A.-Y.
, “
A 2nd generation of 14/16 nm-node compatible strained-Ge pFINFET with improved performance with respect to advanced Si-channel FinFETs
,” in
IEEE Symposium on VLSI Technology
(
2016
).
26.
Murray
,
C.
,
Yan
,
H.-F.
,
Noyan
,
I.
,
Cai
,
Z.
, and
Lai
,
B.
, “
High-resolution strain mapping heteroepitaxial thin-film features
,”
J. Appl. Phys.
98
,
013504
(
2005
).
27.
Orzali
,
T.
,
Vert
,
A.
,
O'Brien
,
B.
,
Herman
,
J. L.
,
Vivekanand
,
S.
,
Papa Rao
,
S. S.
, and
Oktyabrsky
,
S.
, “
Epitaxial growth of GaSb and InAs fins on 300 mm Si (001) by aspect ratio trapping
,”
J. Appl. Phys.
120
,
085308
(
2016
).
28.
Paladugu
,
M.
,
Merckling
,
C.
,
Loo
,
R.
,
Richard
,
O.
,
Bender
,
H.
,
Dekoster
,
J.
,
Vandervorst
,
W.
,
Caymax
,
M.
, and
Heyns
,
M.
, “
Site selective integration of III–V materials on Si for nanoscale logic and photonic devices
,”
Cryst. Growth Des.
12
(
10
),
4696
4702
(
2012
).
29.
Park
,
J.-S.
,
Bai
,
J.
,
Curtin
,
M.
,
Adekore
,
B.
,
Carroll
,
M.
, and
Lochtefeld
,
A.
, “
Defect reduction of selective Ge epitaxy in trenches on Si(001) substrates using aspect ratio trapping
,”
Appl. Phys. Lett.
90
,
052113
(
2007
).
30.
Pennycook
,
S.
and
Jesson
,
D.
, “
High-resolution Z-contrast imaging of crystals
,”
Ultramicroscopy
37
(
1-4
),
14
(
1991
).
31.
Sakai
,
S.
,
Kawasaki
,
K.
, and
Wada
,
N.
, “
Stress distribution analysis in structured GaAs layers fabricated on Si substrates
,”
Jpn. J. Appl. Phys., Part 2
29
(
6
),
L853
(
1990
).
32.
Schulze
,
A.
,
Loo
,
R.
,
Ryan
,
P.
,
Wormington
,
M.
,
Favia
,
P.
,
Witters
,
L.
,
Collaert
,
N.
,
Bender
,
H.
,
Vandervorst
,
W.
, and
Caymax
,
M.
, “
Anisotropic strain relaxation in selectively grown SiGe fin structures
,”
Nanotechnology
28
,
145703
(
2017
).
33.
Snoeck
,
E.
,
Warot
,
B.
,
Ardhuin
,
H.
,
Rocher
,
A.
,
Casanove
,
M.
,
Kilaas
,
R.
, and
M.
Hytch
, “
Quantitative analysis of strain field in thin films from HRTEM micrographs
,”
Thin Solid Films
319
(
1-2
),
157
(
1998
).
34.
Stoica
,
T.
and
L.
Vescan
, “
Misfit dislocations in finite lateral size Si1-xGex films grown by selective epitaxy
,”
J. Cryst. Growth
131
,
32
40
(
1993
).
35.
Svensson
,
J.
,
Dey
,
A.
,
Jacobsson
,
D.
, and
L.-E.
Wernersson
, “
III-V nanowire complementary metal-oxide semiconductor transistors monolithically integrated on Si
,”
Nano Lett.
15
,
7898
(
2015
).
36.
Takagi
,
S.
,
Zhang
,
R.
,
Suh
,
J.
,
Kim
,
S.-H.
,
Yokoyama
,
M.
,
Nishi
,
K.
, and
Takenaka
,
M.
, “
III-V/Ge channel MOS device technologies in nano CMOS era
,”
Jpn. J. Appl. Phys., Part 1
54
,
06FA01
(
2015
).
37.
Vanacore
,
G.
,
Chaigneau
,
M.
,
Barrett
,
N.
,
Bollani
,
M.
,
Boioli
,
F.
,
Salvalaglio
,
M.
,
Montalenti
,
F.
,
Manini
,
N.
,
Caramella
,
L.
,
Biagioni
,
P.
,
Chrastina
,
D.
,
Isella
,
G.
,
Renault
,
O.
,
Zani
,
M.
,
Sordan
,
R.
,
Onida
,
G.
,
Ossikovski
,
R.
,
Drouhin
,
H.-J.
, and
Tagliaferri
,
A.
, “
Hydrostatic strain enhancement in laterally confined SiGe nanostripes
,”
Phys. Rev. B
88
,
115309
(
2013
).
38.
Vurgaftman
,
I.
,
Meyer
,
J.
, and
Ram-Mohan
,
L.
, “
Band parameters for III-V compound semiconductors and their alloys
,”
Appl. Phys. Rev.
89
(
11
),
5815
(
2001
).
39.
Waldron
,
N.
,
Merckling
,
C.
,
Teugels
,
L.
,
Ong
,
P.
,
Sebaai
,
F.
,
Barla
,
K.
,
Collaert
,
N.
, and
Thean
,
V.-Y. A.
, “
Replacement fin processing for III-V on Si: From FinFets to nanowires
,”
Solid-State Electron.
115
,
81
(
2016
).
40.
Waldron
,
N.
,
Sioncke
,
S.
,
Franco
,
J.
,
Nyns
,
L.
,
Vais
,
A.
,
Zhou
,
X.
,
Lin
,
H. C.
,
Boccardi
,
G.
,
Maes
,
J. W.
,
Xie
,
Q.
,
Givens
,
M.
,
Tang
,
F.
,
Jiang
,
X.
,
Chiu
,
E.
,
Opdebeeck
,
A.
,
Merckling
,
C.
,
Sebaai
,
F.
,
van Dorp
,
D.
,
Teugels
,
L.
,
Sibaja Hernandez
,
A.
,
De Meyer
,
K.
,
Barla
,
K.
,
Collaert
,
N.
, and
Thean
,
Y.
, “
Gate-all-around InGaAs nanowire FETS with peak transconductance of 2200μS/μm at 50 nm Lg using a replacement fin RMG flow
,”
IEEE Int. Electron Devices Meet.
2015
,
799
.
41.
Wolf
,
I. D.
, “
Relation between Raman frequency and triaxial stress in Si for surface and cross-sectional
,”
J. Appl. Phys.
118
,
053101
(
2015
).
You do not currently have access to this content.