ScN-rich (Sc,Nb)N solid solution thin films have been studied, motivated by the promising thermoelectric properties of ScN-based materials. Cubic Sc1-xNbxN films for 0 ≤ x ≤ 0.25 were epitaxially grown by DC reactive magnetron sputtering on a c-plane sapphire substrate and oriented along the (111) orientation. The crystal structure, morphology, thermal conductivity, and thermoelectric and electrical properties were investigated. The ScN reference film exhibited a Seebeck coefficient of −45 μV/K and a power factor of 6 × 10−4 W/m K2 at 750 K. Estimated from room temperature Hall measurements, all samples exhibit a high carrier density of the order of 1021 cm−3. Inclusion of heavy transition metals into ScN enables the reduction in thermal conductivity by an increase in phonon scattering. The Nb inserted ScN thin films exhibited a thermal conductivity lower than the value of the ScN reference (10.5 W m−1 K−1) down to a minimum value of 2.2 Wm−1 K−1. Insertion of Nb into ScN thus resulted in a reduction in thermal conductivity by a factor of ∼5 due to the mass contrast in ScN, which increases the phonon scattering in the material.

1.
S.
Kerdsongpanya
,
N.
Van Nong
,
N.
Pryds
,
A.
Ňukauskaitė
,
J.
Jensen
,
J.
Birch
,
J.
Lu
,
L.
Hultman
,
G.
Wingqvist
, and
P.
Eklund
,
Appl. Phys. Lett.
99
,
232113
(
2011
).
2.
P. V.
Burmistrova
,
J.
Maassen
,
T.
Favaloro
,
B.
Saha
,
S.
Salamat
,
Y.
Rui Koh
,
M. S.
Lundstrom
,
A.
Shakouri
, and
T. D.
Sands
,
J. Appl. Phys.
113
,
153704
(
2013
).
3.
C. X.
Quintela
,
J. P.
Podkaminer
,
C. B.
Eom
,
M. N.
Luckyanova
,
G.
Chen
,
T. R.
Paudel
,
E. Y.
Tsymbal
,
E. L.
Thies
,
D. A.
Hillsberry
,
D. A.
Tenne
, and
F.
Rivadulla
,
Adv. Mater.
27
,
3032
(
2015
).
4.
P.
Eklund
,
S.
Kerdsongpanya
, and
B.
Alling
,
J. Mater. Chem. C
4
,
3905
(
2016
).
5.
A. S.
Botana
,
V.
Pardo
, and
W. E.
Pickett
,
Phys. Rev. B
93
,
085125
(
2016
).
6.
A. S.
Botana
,
V.
Pardo
, and
W. E.
Pickett
,
Phys. Rev. Appl.
7
,
024002
(
2017
).
7.
O.
Jankovský
,
D.
Sedmidubský
,
Š.
Huber
,
P.
Šimek
, and
Z.
Sofer
,
J. Eur. Ceram. Soc.
34
(
8
),
4131
(
2014
).
8.
C. X.
Quintela
,
F.
Rivadulla
, and
J.
Rivas
,
Appl. Phys. Lett.
94
,
152103
(
2009
).
9.
J. M.
Gregoire
,
S. D.
Kirby
,
G. E.
Scopelianos
,
F. H.
Lee
, and
R. B.
van Dover
,
J. Appl. Phys.
104
,
074913
(
2008
).
10.
H. A.
Al-Brithen
,
A. R.
Smith
, and
D.
Gall
,
Phys. Rev. B
70
,
045303
(
2004
).
11.
B.
Saha
,
M.
Garbrecht
,
J. A.
Perez-Taborda
,
M. H.
Fawey
,
Y. R.
Koh
,
A.
Shakouri
,
M.
Martin-Gonzalez
,
L.
Hultman
, and
T. D.
Sands
,
Appl. Phys. Lett.
110
,
252104
(
2017
).
12.
J. R.
Sootsman
,
J.
He
,
V. P.
Dravid
,
C.-P.
Li
,
C.
Uher
, and
M. G.
Kanatzidis
,
J. Appl. Phys.
105
,
083718
(
2009
).
13.
S. W.
King
,
R. F.
Davis
, and
R. J.
Nemanich
,
J. Vac. Sci. Technol. A
32
,
061504
(
2014
).
14.
D.
Gall
,
I.
Petrov
,
L. D.
Madsen
,
J.-E.
Sundgren
, and
J. E.
Greene
,
J. Vac. Sci. Technol. A
16
,
2411
(
1998
).
15.
Z.
Gu
,
J. H.
Edgar
,
J.
Pomeroy
,
M.
Kuball
, and
D. W.
Coffey
,
J. Mater. Sci.: Mater. Electron.
15
,
555
(
2004
).
16.
A. R.
Smith
,
H. A. H.
Al-Brithen
,
D. C.
Ingram
, and
D.
Gall
,
J. Appl. Phys.
90
,
1809
(
2001
).
17.
D. M.
Mattox
,
Handbook of Physical Vapor Deposition (PVD) Processing
(
Elsevier Inc
.,
2010
).
18.
G. J.
Snyder
and
E. S.
Toberer
,
Nat. Mater.
7
,
105
(
2008
).
19.
J. R.
Sootsman
,
D. Y.
Chung
, and
M. G.
Kanatzidis
,
Angew. Chem., Int. Ed.
48
,
8616
(
2009
).
20.
V.
Rawat
,
Y. K.
Koh
,
D. G.
Cahill
, and
T. D.
Sands
,
J. Appl. Phys.
105
,
024909
(
2009
).
21.
B.
Saha
,
T. D.
Sands
, and
U. V.
Waghmare
,
J. Appl. Phys.
109
,
083717
(
2011
).
22.
S.
Kerdsongpanya
,
B.
Alling
, and
P.
Eklund
,
J. Appl. Phys.
114
,
073512
(
2013
).
23.
S.
Kerdsongpanya
,
B.
Sun
,
F.
Eriksson
,
J.
Jensen
,
J.
Lu
,
Y. K.
Koh
,
N. V.
Nong
,
B.
Balke
,
B.
Alling
, and
P.
Eklund
,
J. Appl. Phys.
120
,
215103
(
2016
).
24.
J. L.
Schroeder
,
D. A.
Ewoldt
,
R.
Amatya
,
R. J.
Ram
,
A.
Shakouri
, and
T. D.
Sands
,
J. Microelectromech. Syst.
23
,
672
(
2014
).
25.
C. X.
Quintela
,
B.
Rodríguez-González
, and
F.
Rivadulla
,
Appl. Phys. Lett.
104
,
022103
(
2014
).
26.
D. H.
Trinh
,
H.
Hogberg
,
J. M.
Andersson
,
M.
Collin
,
I.
Reineck
,
U.
Helmersson
, and
L.
Hutman
,
J. Vac. Sci. Technol. A
24
,
309
(
2006
).
27.
L.
Pottier
,
Appl. Phys. Lett.
64
,
1618
(
1994
).
28.
B.
Li
,
J.-P.
Roger
,
L.
Pottier
, and
D.
Fournier
,
J. Appl. Phys.
86
,
5314
(
1999
).
29.
K.
Plamann
,
D.
Fournier
,
B. C.
Forget
, and
A. C.
Boccara
,
Diamond Relat. Mater.
5
,
699
(
1996
).
30.
C.
Frétigny
,
J. P.
Roger
,
V.
Reita
, and
D.
Fournier
,
J. Appl. Phys.
102
,
116104
(
2007
).
31.
C.
Frétigny
,
J.-Y.
Duquesne
,
D.
Fournier
, and
F.
Xu
,
J. Appl. Phys.
111
,
084313
(
2012
).
32.
F.
Xu
,
C.
Frétigny
,
D.
Fournier
,
L.
Belliard
,
S.
Vincent
,
B.
Perrin
,
S.
Martin
,
C.
Secouard
, and
J.-Y.
Duquesne
,
J. Appl. Phys.
113
,
244304
(
2013
).
33.
C.
Frétigny
,
J.-Y.
Duquesne
, and
D.
Fournier
,
Int. J. Thermophys.
36
,
1281
1288
(
2015
).
34.
R.
Deng
,
B. D.
Ozsdolay
,
P. Y.
Zheng
,
S. V.
Khare
, and
D.
Gall
,
Phys. Rev. B
91
,
045104
(
2015
).
35.
Y.
Oshima
,
E. G.
Víllora
, and
K.
Shimamura
,
J. Appl. Phys.
115
,
153508
(
2014
).
36.
D.
Gall
,
I.
Petrov
, and
J. E.
Greene
,
J. Appl. Phys.
89
,
401
(
2001
).
37.
C.
Nordling
and
J.
Österman
,
Physics Handbook for Science and Engineering
(
Studentlitteratur AB
,
Lund, Sweden
,
2006
).
You do not currently have access to this content.