The formation of expanded austenite in Cr-Ni austenitic stainless steels like AISI 316L is not completely understood despite its technological relevance. In this work, we present an in-situ X-ray diffraction study on the growth kinetics of the expanded austenite. We applied a low-temperature nitrocarburizing treatment using a mixture of NH3, N2, H2, and C2H4 gases at atmospheric pressures in a novel and custom built chamber attached to a Bruker D8 Advance diffractometer. The nitrocarburizing temperature was varied between 340 and 440 °C, and the possible effects of the gas amount were also tested. The thickness of the growing layer was determined from the shrinkage of the unmodified austenite peak. The growth rate coefficient was calculated using the linear-parabolic equation. The resulting coefficients follow the Arrhenius law with the activation energy of 165 ± 12 kJ/mol. This value is in good agreement with the diffusion activation energy for heavy interstitials like carbon and nitrogen. The expanded austenite peak was modelled by a multilayer approach, where each 0.5 μm sublayer has a constant lattice parameter. The lattice expansion is analyzed as a function of the Boltzmann-variable (η = 0.5 × t−1/2). The expanded austenite layer in this metric has a constant width. Furthermore by rescaling with the lattice expansion of the first sublayer, it is possible to create a scale-independent master curve. These findings indicate that thickening of the expanded austenite is purely diffusion controlled, while the extent of strain is set by the uptake rate of the gas atoms.

1.
Z. L.
Zhang
and
T.
Bell
,
Surf. Eng.
1
,
131
(
1985
).
2.
K.
Ichii
,
K.
Fujimura
, and
T.
Takase
,
Technol. Rep. Kansai Univ.
27
,
135
(
1986
), ISSN:0453-2198.
3.
D. L.
Williamson
,
O.
Öztürk
,
R.
Wei
, and
P. J.
Wilbur
,
Surf. Coat. Technol.
65
,
15
(
1994
).
4.
T.
Christiansen
and
M. A. J.
Somers
,
Scr. Mater.
50
,
35
(
2004
).
5.
D.
Manova
,
S.
Mändl
,
H.
Neumann
, and
B.
Rauschenbach
,
Surf. Coat. Technol.
256
,
64
(
2014
).
6.
D.
Wu
,
Y.
Ge
,
H.
Kahn
,
F.
Ernst
, and
A. H.
Heuer
,
Surf. Coat. Technol.
279
,
180
(
2015
).
7.
T.
Christiansen
and
M. A. J.
Somers
,
Int. J. Mater. Res.
99
,
999
(
2008
).
8.
J.
Buhaigar
,
H.
Dong
, and
T.
Bell
,
Surf. Eng.
23
,
313
(
2013
).
9.
C.
Blawert
,
B. L.
Mordike
,
G. A.
Collins
,
K. T.
Short
,
Y.
Jirásková
,
O.
Schneeweiss
, and
V.
Perina
,
Surf. Coat. Technol.
128–129
,
219
(
2000
).
10.
X. Y.
Li
,
J.
Buhaigar
, and
T.
Bell
,
Surf. Eng.
26
,
67
(
2010
).
11.
T.
Christiansen
,
K. V.
Dahl
, and
M. A. J.
Somers
,
Mater. Sci. Technol.
24
,
159
(
2008
).
12.
A.
Martinavičius
,
G.
Abrasonis
,
A. C.
Scheinost
,
R.
Danoix
,
F.
Danoix
,
J. C.
Stinville
,
G.
Talut
,
C.
Templier
,
O.
Liedke
,
S.
Gemming
, and
W.
Möller
,
Acta Mater.
60
,
4065
(
2012
).
13.
T.
Christiansen
and
M. A. J.
Somers
,
Metall. Mater. Trans. A
37
,
675
(
2006
).
14.
T.
Moskalioviene
,
A.
Galdikas
,
J. P.
Rivière
, and
L.
Pichon
,
Surf. Coat. Technol.
205
,
3301
(
2011
).
15.
D.
Manova
,
S.
Mändl
,
J. W.
Gerlach
,
D.
Hirsch
,
H.
Neumann
, and
B.
Rauschenbach
,
J. Phys. D: Appl. Phys.
47
,
365301
(
2014
).
16.
F. M.
d'Heurle
and
P.
Gas
,
J. Mater. Res.
1
,
205
(
1986
).
17.
B. E.
Deal
and
A. S.
Grove
,
J. Appl. Phys.
36
,
3770
(
1965
).
18.
T.
Christiansen
and
M. A. J.
Somers
,
Int. J. Mater. Res.
100
,
1361
(
2009
).
19.
E. J.
Mittemeijer
and
M. A. J.
Somers
,
Surf. Eng.
13
,
483
(
1997
).
20.
B.
Parditka
,
M.
Verezhak
,
Z.
Balogh
,
A.
Csik
,
G. A.
Langer
,
D. L.
Beke
,
M.
Ibrahim
,
G.
Schmitz
, and
Z.
Erdélyi
,
Acta Mater.
61
,
7173
(
2013
).
21.
U.
Gösele
and
K. N.
Tu
,
J. Appl. Phys.
53
,
3252
(
1982
).
22.
D. L.
Williamson
,
J. A.
Davis
,
P. J.
Wilbur
,
J. J.
Vajo
,
R.
Wei
, and
J. N.
Matossian
,
Nucl. Instrum. Methods Phys. Res., Sect. B
127–128
,
930
(
1997
).
23.
O.
Öztürk
and
D. L.
Williamson
,
J. Appl. Phys.
77
,
3839
(
1995
).
24.
25.
Z.
Erdélyi
,
D. L.
Beke
,
P.
Nemes
, and
G. A.
Langer
,
Philos. Mag.
79
,
1757
(
1999
).
26.
Z.
Balogh
and
G.
Schmitt
, “
Diffusion in metals and alloys
,” in
Physical Metallurgy
, edited by
D. E.
Laughlin
and
K.
Hono
(
Elsevier
,
Amsterdam
,
2014
), Vol.
5
. Chap. 5.7.1, pp.
525
535
.
27.
F. N.
Jespersen
,
J. H.
Hattel
, and
M. A. J.
Somers
,
Modell. Simul. Mater. Sci. Eng.
24
,
025003
(
2016
).
28.
Z.
Erdélyi
,
B.
Parditka
, and
D. L.
Beke
,
Scr. Mater.
64
,
938
(
2011
).
29.
R. P.
Smith
,
Trans. AIME
230
,
476
(
1964
), ISSN: 0543-5722.
30.
P.
Thibaux
,
A.
Métenier
, and
C.
Xhoffer
,
Metall. Mater. Trans. A
38
,
1169
(
2007
).
32.
H. K. D. H.
Bhadesia
,
Met. Sci.
15
,
477
(
1981
).

Supplementary Material

You do not currently have access to this content.