In this paper, the outgassing-rates of a carbon fiber array cathode and a polymer velvet cathode are tested and discussed. Two different methods of measurements are used in the experiments. In one scheme, a method based on dynamic equilibrium of pressure is used. Namely, the cathode works in the repetitive mode in a vacuum diode, a dynamic equilibrium pressure would be reached when the outgassing capacity in the chamber equals the pumping capacity of the pump, and the outgassing rate could be figured out according to this equilibrium pressure. In another scheme, a method based on static equilibrium of pressure is used. Namely, the cathode works in a closed vacuum chamber (a hard tube), and the outgassing rate could be calculated from the pressure difference between the pressure in the chamber before and after the work of the cathode. The outgassing rate is analyzed from the real time pressure evolution data which are measured using a magnetron gauge in both schemes. The outgassing rates of the carbon fiber array cathode and the velvet cathode are 7.3 ± 0.4 neutrals/electron and 85 ± 5 neutrals/electron in the first scheme and 9 ± 0.5 neutrals/electron and 98 ± 7 neutrals/electron in the second scheme. Both the results of two schemes show that the outgassing rate of the carbon fiber array cathode is an order smaller than that of the velvet cathode under similar conditions, which shows that this carbon fiber array cathode is a promising replacement of the velvet cathode in the application of magnetically insulated transmission line oscillators and relativistic magnetrons.

1.
Y. E.
Krasik
,
A.
Dunaevsky
, and
J.
Felsteiner
,
Phys. Plasmas
8
,
2466
(
2001
).
2.
Y. E.
Krasik
,
D.
Yarmolich
,
J. Z.
Gleizer
,
V.
Vekselman
,
Y.
Hadas
,
V. T.
Gurovich
, and
J.
Felsteiner
,
Phys. Plasmas
16
,
057103
(
2009
).
3.
D.
Shiffler
,
M.
Haworth
,
K.
Cartwright
,
R.
Umstattd
,
M.
Ruebush
,
S.
Heidger
,
M.
LaCour
,
K.
Golby
,
D.
Sullivan
,
P.
Duselis
, and
J.
Luginsland
,
IEEE Trans. Plasma Sci.
36
,
718
(
2008
).
4.
Y. E.
Krasik
,
A.
Dunaevsky
,
A.
Krokhmal
,
J.
Felsteiner
,
A. V.
Gunin
,
I. V.
Pegel
, and
S. D.
Korovin
,
J. Appl. Phys.
89
,
2379
(
2001
).
5.
E.
Garate
,
R. D.
McWilliams
,
D. E.
Voss
,
A. L.
Lovesee
,
K. J.
Hendricks
,
K. J.
Hendricks
,
T. A.
Spencer
,
M. C.
Clark
, and
A.
Fisher
,
Rev. Sci. Instrum.
66
,
2528
(
1995
).
6.
Y. W.
Fan
,
H. H.
Zhong
,
Z. Q.
Li
,
C. W.
Yuan
,
T.
Shu
,
H. W.
Yang
,
Y.
Wang
, and
L.
Luo
,
IEEE Trans. Plasma Sci.
39
,
540
(
2011
).
7.
Y. W.
Fan
,
H.-H.
Zhong
,
T.
Shu
, and
Z.-Q.
Li
,
Phys. Plasmas
15
,
083108
(
2008
).
8.
Y. W.
Fan
,
X. Y.
Wang
,
H.
Liang
,
H. H.
Zhong
, and
J. D.
Zhang
,
Chin. Phys. B
24
,
035203
(
2015
).
9.
Y. W.
Fan
,
X. Y.
Wang
,
G. L.
Li
,
H. W.
Yang
,
H. H.
Zhong
, and
J.-D.
Zhang
,
IEEE Trans. Electron Devices
63
,
1307
(
2016
).
10.
M. I.
Fuks
and
E.
Schamiloglu
,
IEEE Trans. Plasma Sci.
38
,
1302
(
2010
).
11.
X. Y.
Wang
,
Y. W.
Fan
,
T.
Shu
, and
D. F.
Shi
,
Phys. Plasmas
23
,
013108
(
2016
).
12.
X. Y.
Wang
,
Y. W.
Fan
,
D. F.
Shi
, and
T.
Shu
,
Phys. Plasmas
23
,
073103
(
2016
).
13.
D.
Shiffler
,
O.
Zhou
,
C.
Bower
,
M.
LaCour
, and
K.
Golby
,
IEEE Trans. Plasma Sci.
32
,
2152
(
2004
).
14.
A. K.
Li
and
Y. W.
Fan
,
J. Appl. Phys.
120
,
065105
(
2016
).
15.
Y. W.
Fan
,
H. H.
Zhong
,
Z. Q.
Li
,
H. W.
Yang
,
T.
Shu
,
H.
Zhou
,
C. W.
Yuan
,
J.
Zhang
, and
L.
Luo
,
J. Appl. Phys.
104
,
023304
(
2008
).
16.
L.
Liu
,
H.
Wan
,
J.
Zhang
,
J. C.
Wen
,
Y. Z.
Zhang
, and
Y. G.
Liu
,
IEEE Trans. Plasma Sci.
32
,
1742
(
2004
).
17.
R. J.
Umstattd
,
C. A.
Schlise
, and
F.
Wang
,
IEEE Trans. Plasma Sci.
33
,
901
(
2005
).
18.
T.
Xun
,
J. D.
Zhang
,
H. W.
Yang
,
Z. C.
Zhang
, and
Y. W.
Fan
,
Phys. Plasmas
16
,
103106
(
2009
).
19.
T.
Xun
,
H. W.
Yang
,
J. D.
Zhang
, and
Z. C.
Zhang
,
Vacuum
85
,
322
(
2010
).
20.
Y. W.
Fan
,
H. H.
Zhong
,
Z. Q.
Li
,
T.
Shu
,
H. W.
Yang
,
H.
Zhou
,
C. W.
Yuan
,
W. H.
Zhou
, and
L.
Luo
,
Phys. Plasmas
15
,
083102
(
2008
).
21.
D.
Shiffler
,
M. J.
LaCour
,
M. D.
Sena
,
M. D.
Mitchell
,
M. D.
Haworth
,
K. J.
Hendricks
, and
T. A.
Spencer
,
IEEE Trans. Plasma Sci.
28
,
517
(
2000
).
22.
F. J.
Agee
,
IEEE Trans. Plasma Sci.
26
,
235
(
1998
).
23.
Y. W.
Fan
,
H. H.
Zhong
,
J. D.
Zhang
,
T.
Shu
, and
J. L.
Liu
,
Rev. Sci. Instrum.
85
,
053512
(
2014
).
24.
Y. W.
Fan
,
X. Y.
Wang
,
Z. C.
Zhang
,
T.
Xun
, and
H. W.
Yang
,
Vacuum
128
,
39
(
2016
).
25.
Y. W.
Fan
,
H. H.
Zhong
,
Z. Q.
Li
,
T.
Shu
,
H. W.
Yang
,
J. H.
Yang
,
Y.
Wang
,
L.
Luo
, and
Y. S.
Zhao
,
Chin. Phys. B
17
,
1804
(
2008
).
26.
Y. W.
Fan
,
X. Y.
Wang
,
H. H.
Zhong
, and
J. D.
Zhang
,
Appl. Phys. Lett.
106
,
093501
(
2015
).
27.
W.
Li
,
J.
Zhang
,
Z. C.
Zhang
,
X. L.
Sun
, and
Y. G.
Liu
,
Phys. Plasmas
21
,
043109
(
2014
).
28.
D.
Shiffler
,
M.
LaCour
,
K.
Golby
,
M.
Sena
,
M.
Mitchell
,
M.
Haworth
,
K.
Hendricks
, and
T.
Spencer
,
IEEE Trans. Plasma Sci.
29
,
445
(
2001
).
29.
D.
Shiffler
,
M.
Ruebush
,
M.
Haworth
,
R.
Umstattd
,
M.
LaCour
,
K.
Golby
,
D.
Zagar
, and
T.
Knowles
,
Rev. Sci. Instrum.
73
,
4358
(
2002
).
30.
R. B.
Miller
,
J. Appl. Phys.
84
,
3880
(
1998
).
31.
Y.
Shen
,
H.
Zhang
,
L. S.
Xia
,
X. G.
Liu
,
H. F.
Pan
,
L.
Lv
,
A. M.
Yang
,
J. S.
Shi
,
L. W.
Zhang
, and
J. J.
Deng
,
Plasma Sci. Technol.
17
,
129
(
2015
).
32.
D. A.
Shiffler
,
J. W.
Luginsland
,
R. J.
Umstattd
,
M.
LaCour
,
K.
Golby
,
M. D.
Haworth
,
M.
Ruebush
,
D.
Zagar
,
A.
Gibbs
, and
T. A.
Spencer
,
IEEE Trans. Plasma Sci.
30
,
1232
(
2002
).
You do not currently have access to this content.