Passivating contacts based on thin tunneling oxides (SiOx) and n- and p-type semi-crystalline or polycrystalline silicon (poly-Si) enable high passivation quality and low contact resistivity, but the integration of these p+/n emitter and n+/n back surface field junctions into interdigitated back contact silicon solar cells poses a challenge due to high recombination at the transition region from p-type to n-type poly-Si. Here, the transition region was created in different configurations—(a) p+ and n+ poly-Si regions are in direct contact with each other (“pn-junction”), using a local overcompensation (counterdoping) as a self-aligning process, (b) undoped (intrinsic) poly-Si remains between the p+ and n+ poly-Si regions (“pin-junction”), and (c) etched trenches separate the p+ and n+ poly-Si regions (“trench”)—in order to investigate the recombination characteristics and the reverse breakdown behavior of these solar cells. Illumination- and injection-dependent quasi-steady state photoluminescence (suns-PL) and open-circuit voltage (suns-Voc) measurements revealed that non-ideal recombination in the space charge regions with high local ideality factors as well as recombination in shunted regions strongly limited the performance of solar cells without a trench. In contrast, solar cells with a trench allowed for open-circuit voltage (Voc) of 720 mV, fill factor of 79.6%, short-circuit current (Jsc) of 41.3 mA/cm2, and a conversion efficiencies (η) of 23.7%, showing that a lowly conducting and highly passivating intermediate layer between the p+ and n+ poly-Si regions is mandatory. Independent of the configuration, no hysteresis was observed upon multiple stresses in reverse direction, indicating a controlled and homogeneously distributed breakdown, but with different breakdown characteristics.

1.
P.
Cousins
,
Solar Technology Efficiency: More Breakthroughs Are Coming
(
2016
), available at https://us.sunpower.com/blog/2016/06/26/sunpower-solar-module-verified-241-percent-efficient/.
2.
J.
Nakamura
,
N.
Asano
,
T.
Hieda
,
C.
Okamoto
,
H.
Katayama
, and
K.
Nakamura
,
IEEE J. Photovoltaics
4
,
1491
(
2014
).
3.
K.
Masuko
,
M.
Shigematsu
,
T.
Hashiguchi
,
D.
Fujishima
,
M.
Kai
,
N.
Yoshimura
,
T.
Yamaguchi
,
Y.
Ichihashi
,
T.
Mishima
,
N.
Matsubara
,
T.
Yamanishi
,
T.
Takahama
,
M.
Taguchi
,
E.
Maruyama
, and
S.
Okamoto
,
IEEE J. Photovoltaics
4
,
1433
(
2014
).
4.
K.
Yoshikawa
,
H.
Kawasaki
,
W.
Yoshida
,
T.
Irie
,
K.
Konishi
,
K.
Nakano
,
T.
Uto
,
D.
Adachi
,
M.
Kanematsu
,
H.
Uzu
, and
K.
Yamamoto
,
Nat. Energy
2
,
17032
(
2017
).
5.
M. A.
Green
,
Y.
Hishikawa
,
W.
Warta
,
E. D.
Dunlop
,
D. H.
Levi
,
J.
Hohl-Ebinger
, and
A. W.
Ho-Baillie
,
Prog. Photovoltaics: Res. Appl.
25
,
668
(
2017
).
6.
F.
Feldmann
,
M.
Bivour
,
C.
Reichel
,
M.
Hermle
, and
S. W.
Glunz
,
Sol. Energy Mater. Sol. Cells
120
,
270
(
2014
).
7.
D.
Yan
,
A.
Cuevas
,
J.
Bullock
,
Y.
Wan
, and
C.
Samundsett
,
Sol. Energy Mater. Sol. Cells
142
,
75
(
2015
).
8.
B.
Nemeth
,
D. L.
Young
,
H.-C.
Yuan
,
V.
LaSalvia
,
A. G.
Norman
,
M.
Page
,
B. G.
Lee
, and
P.
Stradins
, in
Proceedings of the 40th IEEE Photovoltaic Specialists Conference (PVSC), 8–13 June 2014
, pp.
3448
3452
.
9.
U.
Römer
,
R.
Peibst
,
T.
Ohrdes
,
B.
Lim
,
J.
Krügener
,
E.
Bugiel
,
T.
Wietler
, and
R.
Brendel
,
Sol. Energy Mater. Sol. Cells
131
,
85
(
2014
).
10.
M. K.
Stodolny
,
M.
Lenes
,
Y.
Wu
,
G.
Janssen
,
I. G.
Romijn
,
J.
Luchies
, and
L. J.
Geerligs
,
Sol. Energy Mater. Sol. Cells
158
,
24
(
2016
).
11.
Y.
Tao
,
E. L.
Chang
,
A.
Upadhyaya
,
B.
Roundaville
,
Y.-W.
Ok
,
K.
Madani
,
C.-W.
Chen
,
K.
Tate
,
V.
Upadhyaya
,
F.
Zimbardi
,
J.
Keane
,
A.
Payne
, and
A.
Rohatgi
,
in Proceedings of the 42nd IEEE Photovoltaic Specialists Conference (PVSC
),
14–19 June 2015
, pp.
1
5
.
12.
P.
Borden
,
L.
Xu
,
B.
McDougall
,
C. P.
Chang
,
D.
Pysch
,
P.
Voisin
, and
S. W.
Glunz
,
in Proceedings of the 23rd European Photovoltaic Solar Energy Conference (EUPVSEC)
,
1–5 September 2008
, pp.
1149
1152
.
13.
J. Y.
Gan
and
R. M.
Swanson
,
in Proceedings of the 21st IEEE Photovoltaic Specialists Conference (PVSC)
,
21–25 May 1990
, pp.
245
250
.
14.
D.
De Ceuster
,
P. J.
Cousins
, and
D. D.
Smith
, Patent application US 2009/0308438 A1 (17 December
2009
).
15.
C.
Reichel
,
F.
Feldmann
,
R.
Müller
,
A.
Moldovan
,
M.
Hermle
, and
S. W.
Glunz
,
in Proceedings of the 29th European Photovoltaic Solar Energy Conference and Exhibition, 22–26 September 2014
, pp.
487
491
.
16.
U.
Römer
,
R.
Peibst
,
T.
Ohrdes
,
B.
Lim
,
J.
Krugener
,
T.
Wietler
, and
R.
Brendel
,
IEEE J. Photovoltaics
5
,
507
(
2015
).
17.
U.
Römer
, Ph.D. dissertation,
Gottfried Wilhelm Leibniz Universität Hannover, Hannover
,
2015
.
18.
D. L.
Young
,
W.
Nemeth
,
V.
LaSalvia
,
R.
Reedy
,
S.
Essig
,
N.
Bateman
, and
P.
Stradins
,
IEEE J. Photovoltaics
6
,
41
(
2016
).
19.
M.
Rienäcker
,
A.
Merkle
,
U.
Römer
,
H.
Kohlenberg
,
J.
Krügener
,
R.
Brendel
, and
R.
Peibst
,
Energy Procedia
92
,
412
(
2016
).
20.
U.
Römer
,
R.
Peibst
,
T.
Ohrdes
,
Y.
Larionova
,
N.-P.
Harder
,
R.
Brendel
,
A.
Grohe
,
D.
Stichtenoth
,
T.
Wütherich
,
C.
Schollhorn
,
H.-J.
Krokoszinski
, and
J.
Graff
, in
Proceedings of the 39th IEEE Photovoltaic Specialists Conference (PVSC), 16–21 June 2013
, pp.
1280
1284
.
21.
U.
Römer
,
A.
Merkle
,
R.
Peibst
,
T.
Ohrdes
,
B.
Lim
,
J.
Krügener
, and
R.
Brendel
, in
Proceedings of the 29th European Photovoltaic Solar Energy Conference and Exhibition, 22–26 September 2014
, pp.
1107
1110
.
22.
G.
Yang
,
A.
Ingenito
,
O.
Isabella
, and
M.
Zeman
,
Sol. Energy Mater. Sol. Cells
158
,
84
(
2016
).
23.
F.
Haase
,
F.
Kiefer
,
S.
Schäfer
,
C.
Kruse
,
J.
Krügener
,
R.
Brendel
, and
R.
Peibst
,
Jpn. J. Appl. Phys., Part 1
56
,
08MB15
(
2017
).
24.
R. A.
Sinton
and
R. M.
Swanson
,
IEEE Trans. Electron Devices
37
,
348
(
1990
).
25.
N.-P.
Harder
,
V.
Mertens
, and
R.
Brendel
,
Phys. Status Solidi RRL
2
,
148
(
2008
).
26.
C.
Reichel
,
F.
Granek
,
M.
Hermle
, and
S. W.
Glunz
,
Phys. Status Solidi A
207
,
1978
(
2010
).
27.
A.
Halm
,
V. D.
Mihailetchi
,
G.
Galbiati
,
L. J.
Koduvelikulathu
,
R.
Roescu
,
C.
Comparotto
,
R.
Kopecek
,
K.
Peter
, and
J.
Libal
,
in Proceedings of the 27th European Photovoltaic Solar Energy Conference (EUPVSEC)
,
24–28 September 2012
, pp.
567
570
.
28.
R.
Müller
,
J.
Schrof
,
C.
Reichel
,
J.
Benick
, and
M.
Hermle
,
Appl. Phys. Lett.
105
,
103503
(
2014
).
29.
J.
Dong
,
L.
Tao
,
Y.
Zhu
,
Z.
Yang
,
Z.
Xia
,
R.
Sidhu
, and
G.
Xing
,
IEEE J. Photovoltaics
4
,
130
(
2014
).
30.
A.
Mewe
,
P.
Spinelli
,
A.
Burgers
,
G.
Janssen
,
N.
Guillevin
,
B.
van de Loo
,
E.
Kessels
,
A.
Ylooswijk
,
B.
Geerligs
, and
I.
Cesar
,
in Proceedings of the 42nd Photovoltaic Specialists Conference (PVSC)
,
14–19 June 2015
, p.
1
6
.
31.
H.
Kobayashi Asuha
,
O.
Maida
,
M.
Takahashi
, and
H.
Iwasa
,
J. Appl. Phys.
94
,
7328
(
2003
).
32.
F.
Feldmann
,
C.
Reichel
,
R.
Müller
, and
M.
Hermle
,
Sol. Energy Mater. Sol. Cells
159
,
265
(
2017
).
33.
C.
Reichel
,
F.
Feldmann
,
R.
Müller
,
R. C.
Reedy
,
B. G.
Lee
,
D. L.
Young
,
P.
Stradins
,
M.
Hermle
, and
S. W.
Glunz
,
J. Appl. Phys.
118
,
205701
(
2015
).
34.
F.
Feldmann
,
R.
Müller
,
C.
Reichel
, and
M.
Hermle
,
Phys. Status Solidi RRL
08
,
767
(
2014
).
35.
D.
Schuldis
,
A.
Richter
,
J.
Benick
,
P.
Saint-Cast
,
M.
Hermle
, and
S. W.
Glunz
,
Appl. Phys. Lett.
105
,
231601
(
2014
).
36.
S.
Lindekugel
,
H.
Lautenschlager
,
T.
Ruof
, and
S.
Reber
,
in Proceedings of the 23rd European Photovoltaic Solar Energy Conference (EUPVSEC)
,
1–5 September 2008
, pp.
2232
2235
.
37.
J. A.
Giesecke
,
B.
Michl
,
F.
Schindler
,
M. C.
Schubert
, and
W.
Warta
,
Sol. Energy Mater. Sol. Cells
95
,
1979
(
2011
).
38.
T.
Trupke
,
R. A.
Bardos
,
M. D.
Abbott
, and
J. E.
Cotter
,
Appl. Phys. Lett.
87
,
93503
(
2005
).
39.
R. A.
Sinton
,
A.
Cuevas
, and
M.
Stuckings
,
in Proceedings of the 25th IEEE Photovoltaic Specialists Conference (PVSC)
,
13–17 May 1996
, pp.
457
460
.
40.
R. A.
Sinton
and
A.
Cuevas
,
Appl. Phys. Lett.
69
,
2510
(
1996
).
41.
R. A.
Sinton
and
A.
Cuevas
,
in Proceedings of the 16th European Photovoltaic Solar Energy Conference (EUPVSEC)
,
1–5 May 2000
, pp.
1152
1155
.
42.
D.
Pysch
,
A.
Mette
, and
S. W.
Glunz
,
Sol. Energy Mater. Sol. Cells
91
,
1698
(
2007
).
43.
H.
Steinkemper
,
F.
Feldmann
,
M.
Bivour
, and
M.
Hermle
,
IEEE J. Photovoltaics
5
,
1348
(
2015
).
44.
R. S.
Bonilla
,
C.
Reichel
,
M.
Hermle
, and
P. R.
Wilshaw
,
Phys. Status Solidi RRL
11
,
1600307
(
2017
).
45.
J.
Manoliu
and
T. I.
Kamins
,
Solid-State Electron.
15
,
1103
(
1972
).
46.
M.
Dutoit
and
F.
Sollberger
,
J. Electrochem. Soc. Solid-State Sci. Technol.
125
,
1648
(
1978
).
47.
N. M.
Johnson
,
D. K.
Biegelsen
, and
M. D.
Moyer
,
Appl. Phys. Lett.
38
,
900
(
1981
).
48.
A.
Cuevas
and
R. A.
Sinton
,
Prog. Photovoltaics: Res. Appl.
5
,
79
(
1997
).
49.
M. D.
Abbott
,
R. A.
Bardos
,
T.
Trupke
,
K. C.
Fisher
, and
E.
Pink
,
J. Appl. Phys.
102
,
44502
(
2007
).
50.
T.
Trupke
,
E.
Pink
,
R. A.
Bardos
, and
M. D.
Abbott
,
Appl. Phys. Lett.
90
,
93506
(
2007
).
51.
P. P.
Altermatt
,
A. G.
Aberle
,
J.
Zhao
,
A.
Wang
, and
G.
Heiser
,
Sol. Energy Mater. Sol. Cells
74
,
165
(
2002
).
52.
S. W.
Glunz
,
D.
Biro
,
S.
Rein
, and
W.
Warta
,
J. Appl. Phys.
86
,
683
(
1999
).
53.
G. A. M.
Hurkx
,
D. B. M.
Klaassen
, and
M. P. G.
Knuvers
,
IEEE Trans. Electron Devices
2
,
331
(
1992
).
54.
A.
Schenk
and
U.
Krumbein
,
J. Appl. Phys.
78
,
3185
(
1995
).
55.
D. W.
Greve
,
P. A.
Potyraj
, and
A. M.
Guzman
,
Solid State Elecronics
28
,
1255
(
1985
).
56.
A.
Aziz
,
O.
Bonnaud
,
H.
Lhemite
, and
F.
Raoult
,
IEEE Trans. Electron Devices
41
,
204
(
1994
).
57.
D.-L.
Chen
,
A. M.
Guzman
, and
D. W.
Greve
,
IEEE Trans. Electron Devices
33
,
270
(
1986
).
58.
M. A.
Kroon
and
R. A. C. M. M.
van Swaaij
,
J. Appl. Phys.
90
,
994
(
2001
).
59.
R.-S.
Huang
,
C.-H.
Cheng
,
J. C.
Liu
,
M. K.
Lee
, and
C. T.
Chen
,
Solid-State Electron.
26
,
657
(
1983
).
60.
B. W.
Liou
,
S. C.
Chang
, and
S. J.
Wang
,
Jpn. J. Appl. Phys., Part 1
44
,
2929
(
2005
).
61.
M.
Stewart
and
M. K.
Hatalis
,
Solid-State Electron.
44
,
1613
(
2000
).
62.
A.
Jamshidi-Roudbari
and
M. K.
Hatalis
,
IEEE Trans. Electron Devices
58
,
1054
(
2011
).
63.
H.
Noge
,
K.
Saito
,
A.
Sato
,
T.
Kaneko
, and
M.
Kondo
,
Jpn. J. Appl. Phys., Part 1
54
,
08KD17
(
2015
).
64.
R. R.
Peibst
, Patent application WO 2016/184840 A2 (24 November 2016).
65.
S.
Rim
and
D. D.
Smith
, Patent application US 2014/0090701 A1 (3 April 2014).
66.
M.
Amrani
,
Z.
Benamara
,
M.
Chellali
,
S.
Tizi
, and
T.
Mohammed-Brahim
,
J. Appl. Phys.
101
,
104509
(
2007
).
67.
H.
Chu
,
L. J.
Koduvelikulathu
,
V. D.
Mihailetchi
,
G.
Galbiati
,
A.
Halm
, and
R.
Kopecek
,
Energy Procedia
77
,
29
(
2015
).
68.
K.
Mangersnes
and
S. E.
Foss
,
in Proceedings of the 28th European Photovoltaic Solar Energy Conference (EUPVSEC)
,
30 September–4 October 2013
, pp.
1645
1649
.
69.
S. L.
Wu
,
C. L.
Lee
, and
T. F.
Lei
,
Appl. Phys. Lett.
57
,
1904
(
1990
).
70.
R.
Müller
,
C.
Reichel
,
J.
Schrof
,
M.
Padilla
,
M.
Selinger
,
I.
Geisemeyer
,
J.
Benick
, and
M.
Hermle
,
Sol. Energy Mater. Sol. Cells
142
,
54
(
2015
).
71.
K.
Misiakos
and
D.
Tsamakis
,
J. Appl. Phys.
74
,
3293
(
1993
).
72.
T.
Trupke
,
M. A.
Green
,
P.
Würfel
,
P. P.
Altermatt
,
A.
Wang
,
J.
Zhao
, and
R.
Corkish
,
J. Appl. Phys.
94
,
4930
(
2003
).
73.
A.
Richter
,
S. W.
Glunz
,
F.
Werner
,
J.
Schmidt
, and
A.
Cuevas
,
Phys. Rev. B
86
,
165202
(
2012
).
74.
D. E.
Kane
and
R. M.
Swanson
,
in Proceedings of the 18th IEEE Photovoltaic Specialists Conference (PVSC)
,
21–25 October 1985
, pp.
578
581
.
You do not currently have access to this content.