This study investigates a low degradation metal-ion conductive bridge RAM (CBRAM) structure. The structure is based on placing a diffusion blocking layer (DBL) between the device's top electrode (TE) and the resistive switching layer (RSL), unlike conventional CBRAMs, where the TE serves as a supply reservoir for metallic species diffusing into the RSL to form a conductive filament (CF) and is kept in direct contact with the RSL. The properties of a conventional CBRAM structure (Cu/HfO2/TiN), having a Cu TE, 10 nm HfO2 RSL, and a TiN bottom electrode, are compared with a 2 nm TaN DBL incorporating structure (Cu/TaN/HfO2/TiN) for 103 programming and erase simulation cycles. The low and high resistive state values for each cycle are calculated and the analysis reveals that adding the DBL yields lower degradation. In addition, the 2D distribution plots of oxygen vacancies, O ions, and Cu species within the RSL indicate that oxidation occurring in the DBL-RSL interface results in the formation of a sub-stoichiometric tantalum oxynitride with higher blocking capabilities that suppresses further Cu insertion beyond an initial CF formation phase, as well as CF lateral widening during cycling. The higher endurance of the structure with DBL may thus be attributed to the relatively low amount of Cu migrating into the RSL during the initial CF formation. Furthermore, this isomorphic CF displays similar cycling behavior to neural ionic channels. The results of numerical analysis show a good match to experimental measurements of similar device structures as well.

1.
L. O.
Chua
, “
Memristor—Missing circuit element
,”
IEEE Trans. Circuit Theory
18
,
507
519
(
1971
).
2.
L. O.
Chua
and
S. M.
Kang
, “
Memristive devices and systems
,”
Proc. IEEE
64
,
209
223
(
1976
).
3.
T. Y.
Tseng
and
S. M.
Sze
,
Nonvolatile Memories: Materials, Devices, and Applications
(
American Scientific Publishers
,
CA, USA
,
2012
), Vol.
1
, p.
1
.
4.
D. B.
Strukov
 et al, in
ISCAS
,
2010
, p.
1967
.
5.
H.-S. P.
Wong
 et al,
Nano Lett.
12
,
2179
(
2012
).
6.
J. J.
Yang
,
D. B.
Strukov
, and
D. R.
Stewart
,
Nat. Nanotechnol.
8
,
13
(
2013
).
7.
H.-S. P.
Wong
,
H. Y.
Lee
,
S.
Yu
,
Y. S.
Chen
,
Y.
Wu
,
P. S.
Chen
,
B.
Lee
,
F. T.
Chen
, and
M. J.
Tsai
, “
Metal-oxide RRAM
,”
Proc. IEEE
100
(
6
),
1951
1970
(
2012
).
8.
K.
Aratani
 et al, “
A novel resistance memory with high scalability and nanosecond switching
,”
IEEE Int. Electron Devices Meet.
2007
,
783
786
.
9.
D.
Berco
and
T. Y.
Tseng
,
J. Comput. Electron.
15
(
2
),
577
585
(
2015
).
10.
D.
Berco
and
T.-Y.
Tseng
,
Appl. Phys. Lett.
107
,
253504
(
2015
).
11.
D.
Berco
and
T. Y.
Tseng
,
J. Comput. Electron.
15
(
2
),
586
594
(
2015
).
12.
D.
Berco
and
T.-Y.
Tseng
,
AIP Adv.
6
,
025212
(
2016
).
13.
U.
Chand
,
T.-Y.
Tseng
 et al,
Appl. Phys. Lett.
106
(
16
),
153502
(
2015
).
14.
U.
Chand
,
T.-Y.
Tseng
 et al,
J. Appl. Phys.
117
(
18
),
184105
(
2015
).
15.
J.
Guy
,
G.
Molas
,
P.
Blaise
,
C.
Carabasse
,
M.
Bernard
,
A.
Roule
,
G.
Le Carval
,
V.
Sousa
,
H.
Grampeix
,
V.
Delaye
,
A.
Toffoli
,
J.
Cluzel
,
P.
Brianceau
,
O.
Pollet
,
V.
Balan
,
S.
Barraud
,
O.
Cueto
,
G.
Ghibaudo
,
F.
Clermidy
,
B. De
Salvo
, and
L.
Perniola
,
IEEE Int. Electron Devices Meet.
2014
,
6.5.1
6.5.4
.
16.
G.
Molas
,
E.
Vianello
,
F.
Dahmani
,
M.
Barci
,
P.
Blaise
,
J.
Guy
,
A.
Toffoli
,
M.
Bernard
,
A.
Roule
,
F.
Pierre1
,
C.
Licitra
,
B.
De Salvo
, and
L.
Perniola
,
IEEE Int. Electron Devices Meet.
2014
,
6.1.1
6.1.4
.
17.
W. M.
Haynes
,
CRC Handbook of Chemistry and Physics
, 91st ed. (
CRC Press
,
Boca Raton, FL
,
2010
), pp.
5-16
5-17
.
18.
P.
Zhou
,
M.
Yin
,
H. J.
Wan
,
H. B.
Lu
,
T. A.
Tang
, and
Y. Y.
Lin
,
Appl. Phys. Lett.
94
,
053510
(
2009
).
19.
K.-L.
Ou
,
W.-F.
Wu
,
C.-P.
Chou
,
S.-Y.
Chiou
, and
C.-C.
Wu
,
JVSTB
20
,
2154
(
2002
).
20.
K.-L.
Ou
,
M.-H.
Lin
, and
S.-Y.
Chiou
,
Electrochem. Solid-State Lett.
7
(
11
),
G272
G275
(
2004
).
21.
J.-C.
Lin
and
C.
Lee
,
J. Electrochem. Soc.
146
(
9
),
3466
3471
(
1999
).
22.
E.
Bozorg-Grayeli
 et al,
Appl. Phys. Lett.
99
,
261906
(
2011
).
23.
D. P.
Brady
,
F. N.
Fuss
, and
D.
Gerstenberg
,
Thin Solid Films
66
(
3
),
287
302
(
1980
).
You do not currently have access to this content.