The electrochemical switching of SrCoOx-based non-volatile memory with a thin-film-transistor structure was examined by using liquid-leakage-free electrolytes with different conductivities (σ) as the gate insulator. We first examined leakage-free water, which is incorporated in the amorphous (a-) 12CaO·7Al2O3 film with a nanoporous structure (Calcium Aluminate with Nanopore), but the electrochemical oxidation/reduction of the SrCoOx layer required the application of a high gate voltage (Vg) up to 20 V for a very long current-flowing-time (t) ∼40 min, primarily due to the low σ [2.0 × 10−8 S cm−1 at room temperature (RT)] of leakage-free water. We then controlled the σ of the leakage-free electrolyte, infiltrated in the a-NaxTaO3 film with a nanopillar array structure, from 8.0 × 10−8 S cm−1 to 2.5 × 10−6 S cm−1 at RT by changing the x = 0.01–1.0. As the result, the t, required for the metallization of the SrCoOx layer under small Vg = –3 V, becomes two orders of magnitude shorter with increase of the σ of the a-NaxTaO3 leakage-free electrolyte. These results indicate that the ion migration in the leakage-free electrolyte is the rate-determining step for the electrochemical switching, compared to the other electrochemical process, and the high σ of the leakage-free electrolyte is the key factor for the development of the non-volatile SrCoOx-based electro-magnetic phase switching device.

1.
J.
Mannhart
and
D. G.
Schlom
,
Nature
430
,
620
621
(
2004
).
3.
H.
Takagi
and
H. Y.
Hwang
,
Science
327
,
1601
1602
(
2010
).
4.
S. K.
Deb
,
Philos. Mag.
27
,
801
822
(
1973
).
5.
J. D.
Jorgensen
,
B. W.
Veal
,
A. P.
Paulikas
,
L. J.
Nowicki
,
G. W.
Crabtree
,
H.
Claus
, and
W. K.
Kwok
,
Phys. Rev. B
41
,
1863
1877
(
1990
).
6.
A. F.
Wells
,
Structural Inorganic Chemistry
, 5th ed. (
Oxford University Press
,
Oxford
,
1984
).
7.
C. H.
Ahn
,
A.
Bhattacharya
,
M.
Di Ventra
,
J. N.
Eckstein
,
C. D.
Frisbie
,
M. E.
Gershenson
,
A. M.
Goldman
,
I. H.
Inoue
,
J.
Mannhart
,
A. J.
Millis
,
A. F.
Morpurgo
,
D.
Natelson
, and
J.-M.
Triscone
,
Rev. Mod. Phys.
78
,
1185
1212
(
2006
).
8.
T.
Takeda
,
Y.
Yamaguchi
, and
H.
Watanabe
,
J. Phys. Soc. Jpn.
33
,
970
972
(
1972
).
9.
T.
Takeda
and
H.
Watanabe
,
J. Phys. Soc. Jpn.
33
,
973
978
(
1972
).
10.
S.
Balamurugan
,
K.
Yamaura
,
A. B.
Karki
,
D. P.
Young
,
M.
Arai
, and
E.
Takayama-Muromachi
,
Phys. Rev. B
74
,
172406
(
2006
).
11.
J.
Mizusaki
,
S.
Yamauchi
,
K.
Fueki
, and
A.
Ishikawa
,
Solid State Ionics
12
,
119
124
(
1984
).
12.
Z.
Shao
and
S. M.
Haile
,
Nature
431
,
170
173
(
2004
).
13.
R.
Merkle
and
J.
Maier
,
Angew. Chem. Int. Ed.
47
,
3874
3894
(
2008
).
14.
H.
Jeen
,
W. S.
Choi
,
M. D.
Biegalski
,
C. M.
Folkman
,
I.-C.
Tung
,
D. D.
Fong
,
J. W.
Freeland
,
D.
Shin
,
H.
Ohta
,
M. F.
Chisholm
, and
H. N.
Lee
,
Nat. Mater.
12
,
1057
1063
(
2013
).
15.
S.
Hu
,
Y.
Wang
,
C.
Cazorla
, and
J.
Seidel
,
Chem. Mater.
29
,
708
717
(
2017
).
16.
J.-C.
Grenier
,
A.
Wattiaux
,
J.-P.
Doumerc
,
P.
Dordor
,
L.
Fournes
,
J.-P.
Chaminade
, and
M.
Pouchard
,
J. Solid State Chem.
96
,
20
30
(
1992
).
17.
P.
Bezdicka
,
A.
Wattiaux
,
J. C.
Grenier
,
M.
Pouchard
, and
P.
Hagenmuller
,
Z. Anorg. Allg. Chem.
619
,
7
12
(
1993
).
18.
A.
Nemudry
,
P.
Rudolf
, and
R.
Schöllhorn
,
Chem. Mater.
8
,
2232
2238
(
1996
).
19.
N.
Ichikawa
,
M.
Iwanowska
,
M.
Kawai
,
C.
Calers
,
W.
Paulus
, and
Y.
Shimakawa
,
Dalton Trans.
41
,
10507
10510
(
2012
).
20.
O. T.
Tambunan
,
M. Y.
Lee
,
D. H.
Kim
,
K. J.
Parwanta
, and
C. U.
Jung
,
J. Korean Phys. Soc.
64
,
1845
1848
(
2014
).
21.
S.
Hu
and
J.
Seidel
,
Nanotechnology
27
,
325301
(
2016
).
22.
H.
Ohta
,
Y.
Sato
,
T.
Kato
,
S. W.
Kim
,
K.
Nomura
,
Y.
Ikuhara
, and
H.
Hosono
,
Nat. Commun.
1
,
118
(
2010
).
23.
T.
Katase
,
K.
Endo
,
T.
Tohei
,
Y.
Ikuhara
, and
H.
Ohta
,
Adv. Electron. Mater.
1
,
1500063
(
2015
).
24.
T.
Katase
,
Y.
Suzuki
, and
H.
Ohta
,
Adv. Electron. Mater.
2
,
1600044
(
2016
).
25.
T.
Katase
,
T.
Onozato
,
M.
Hirono
,
T.
Mizuno
, and
H.
Ohta
,
Sci. Rep.
6
,
25819
(
2016
).
26.
T.
Katase
,
K.
Endo
, and
H.
Ohta
,
APL Mater.
5
,
056105
(
2017
).
27.
P. G.
Dickens
and
M. S.
Whittingham
,
Q. Rev. Chem. Soc.
22
,
30
44
(
1968
).
28.
When the porosity of the CAN film reaches ∼30% with respect to the fully dense 12CaO·7Al2O3 film, the nanopores connect with each other, leading to the percolation conduction of water in the solid CAN film.
29.
T. S.
Light
,
S.
Licht
,
A. C.
Bevilacqua
, and
K. R.
Morash
,
Electrochem. Solid-State Lett.
8
,
E16
E19
(
2005
).
30.
T.
Katase
,
K.
Endo
, and
H.
Ohta
,
Phys. Rev. B
90
,
161105(R)
(
2014
).
31.
T.
Katase
,
K.
Endo
, and
H.
Ohta
,
Phys. Rev. B
92
,
035302
(
2015
).
32.
H.
Ohta
,
J. Mater. Sci.
48
,
2797
2805
(
2013
).

Supplementary Material

You do not currently have access to this content.