This report introduces a local-magnetic-reversal-nucleation based giant magnetoresistance (GMR) sensor with a large sensing area and further discusses its novel sensing scheme of high magnetic moment nanoparticles (MNPs). We demonstrated experimentally that this large-area GMR sensor could successfully detect high moment MNPs. The detection scheme of localized reversal nucleation of GMR sensor induced by MNPs was analyzed and further confirmed by the micromagnetic simulations. This work may provide one pathway in designing next generation GMR biosensors with large area and high sensitivity. This sensing scheme could be applicable to other magnetic biosensors such as magnetic tunnel junction sensors and planar Hall sensors.

1.
V.
Hodnik
and
G.
Anderluh
, “
Toxin detection by surface plasmon resonance
,”
Sensors
9
(
3
),
1339
1354
(
2009
).
2.
G.
Zheng
 et al, “
Multiplexed electrical detection of cancer markers with nanowire sensor arrays
,”
Nat. Biotechnol.
23
(
10
),
1294
1301
(
2005
).
3.
H.
Shao
 et al, “
Protein typing of circulating microvesicles allows real-time monitoring of glioblastoma therapy
,”
Nat. Med.
18
(
12
),
1835
1840
(
2012
).
4.
J.-M.
Nam
,
C. S.
Thaxton
, and
C. A.
Mirkin
, “
Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins
,”
Science
301
(
5641
),
1884
1886
(
2003
).
5.
A. W.
Martinez
 et al, “
Diagnostics for the developing world: Microfluidic paper-based analytical devices
,”
Anal. Chem.
82
(
1
),
3
10
(
2009
).
6.
Y.
Cheng
 et al, “
Functionalized SnO2 nanobelt field-effect transistor sensors for label-free detection of cardiac troponin
,”
Biosens. Bioelectron.
26
(
11
),
4538
4544
(
2011
).
7.
A.
Gao
 et al, “
Silicon-nanowire-based CMOS-compatible field-effect transistor nanosensors for ultrasensitive electrical detection of nucleic acids
,”
Nano Lett.
11
(
9
),
3974
3978
(
2011
).
8.
M. N.
Baibich
 et al, “
Giant magnetoresistance of (001) Fe/(001) Cr magnetic superlattices
,”
Phys. Rev. Lett.
61
(
21
),
2472
(
1988
).
9.
G.
Binasch
 et al, “
Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange
,”
Phys. Rev. B
39
(
7
),
4828
(
1989
).
10.
W.
Wang
 et al, “
Magnetoresistive performance and comparison of supermagnetic nanoparticles on giant magnetoresistive sensor-based detection system
,”
Sci. Rep.
4
,
5716
(
2014
).
11.
S. X.
Wang
and
G.
Li
, “
Advances in giant magnetoresistance biosensors with magnetic nanoparticle tags: Review and outlook
,”
IEEE Trans. Magn.
44
(
7
),
1687
1702
(
2008
).
12.
J.
Rife
 et al, “
Design and performance of GMR sensors for the detection of magnetic microbeads in biosensors
,”
Sens. Actuators, A
107
(
3
),
209
218
(
2003
).
13.
G.
Li
 et al, “
Spin valve sensors for ultrasensitive detection of superparamagnetic nanoparticles for biological applications
,”
Sens. Actuators, A
126
(
1
),
98
106
(
2006
).
14.
M.
Koets
 et al, “
Rapid DNA multi-analyte immunoassay on a magneto-resistance biosensor
,”
Biosens. Bioelectron.
24
(
7
),
1893
1898
(
2009
).
15.
R. S.
Gaster
 et al, “
Quantification of protein interactions and solution transport using high-density GMR sensor arrays
,”
Nat. Nanotechnol.
6
(
5
),
314
320
(
2011
).
16.
C.
Marquina
 et al, “
GMR sensors and magnetic nanoparticles for immuno-chromatographic assays
,”
J. Magn. Magn. Mater.
324
(
21
),
3495
3498
(
2012
).
17.
R. L.
Millen
 et al, “
Giant magenetoresistive sensors. 2. Detection of biorecognition events at self-referencing and magnetically tagged arrays
,”
Anal. Chem.
80
(
21
),
7940
7946
(
2008
).
18.
G.
Reiss
 et al, “
Magnetoresistive sensors and magnetic nanoparticles for biotechnology
,”
J. Mater. Res.
20
(
12
),
3294
3302
(
2005
).
19.
W.
Wang
 et al, “
Magnetic detection of mercuric ion using giant magnetoresistance-based biosensing system
,”
Anal. Chem.
86
(
8
),
3712
3716
(
2014
).
20.
H.
Ferreira
 et al, “
Biodetection using magnetically labeled biomolecules and arrays of spin valve sensors
,”
J. Appl. Phys.
93
(
10
),
7281
7286
(
2003
).
21.
B.
Srinivasan
 et al, “
A detection system based on giant magnetoresistive sensors and high‐moment magnetic nanoparticles demonstrates zeptomole sensitivity: Potential for personalized medicine
,”
Angew. Chem., Int. Ed.
48
(
15
),
2764
2767
(
2009
).
22.
D. R.
Baselt
 et al, “
A biosensor based on magnetoresistance technology
,”
Biosens. Bioelectron.
13
(
7
),
731
739
(
1998
).
23.
V. C.
Martins
 et al, “
Challenges and trends in the development of a magnetoresistive biochip portable platform
,”
J. Magn. Magn. Mater.
322
(
9
),
1655
1663
(
2010
).
24.
B.
De Boer
 et al, “
An integrated and sensitive detection platform for magneto-resistive biosensors
,”
Biosens. Bioelectron.
22
(
9
),
2366
2370
(
2007
).
25.
J.
Germano
 et al, “
A portable and autonomous magnetic detection platform for biosensing
,”
Sensors
9
(
6
),
4119
4137
(
2009
).
26.
D. A.
Hall
 et al, “
A 256 channel magnetoresistive biosensor microarray for quantitative proteomics
,” in
2011 Symposium on VLSI Circuits (VLSIC)
(IEEE,
2011
).
27.
G.
Li
,
S.
Sun
, and
S. X.
Wang
, “
Spin valve biosensors: Signal dependence on nanoparticle position
,”
J. Appl. Phys.
99
(
8
),
08P107
(
2006
).
28.
G.
Li
and
S. X.
Wang
, “
Analytical and micromagnetic modeling for detection of a single magnetic microbead or nanobead by spin valve sensors
,”
IEEE Trans. Magn.
39
(
5
),
3313
3315
(
2003
).
29.
G.
Li
,
S. X.
Wang
, and
S.
Sun
, “
Model and experiment of detecting multiple magnetic nanoparticles as biomolecular labels by spin valve sensors
,”
IEEE Trans. Magn.
40
(
4
),
3000
3002
(
2004
).
30.
J.
Nordling
 et al, “
Giant magnetoresistance sensors. 1. Internally calibrated readout of scanned magnetic arrays
,”
Anal. Chem.
80
(
21
),
7930
7939
(
2008
).
31.
D.
Heim
 et al, “
Design and operation of spin valve sensors
,”
IEEE Trans. Magn.
30
(
2
),
316
321
(
1994
).
32.
M.
Tondra
,
M.
Porter
, and
R. J.
Lipert
, “
Model for detection of immobilized superparamagnetic nanosphere assay labels using giant magnetoresistive sensors
,”
J. Vac. Sci. Technol. A
18
(
4
),
1125
1129
(
2000
).
33.
Y.
Li
 et al, “
Biomarkers identification and detection based on GMR sensor and sub 13 nm magnetic nanoparticles
,” in
Annual International Conference on IEEE Engineering and Medicinal Biology Society, EMBC 2009
(IEEE,
2009
).
34.
T.
Klein
 et al, “
Comparative analysis of several GMR strip sensor configurations for biological applications
,”
Sens. Actuators, A
216
,
349
354
(
2014
).
35.
B.
Dieny
 et al, “
Giant magnetoresistive in soft ferromagnetic multilayers
,”
Phys. Rev. B
43
(
1
),
1297
(
1991
).
36.
N.
Yang
 et al, “
An early cancer diagnosis platform based on micro-magnetic sensor array demonstrates ultra-high sensitivity
,”
J. Nanomed. Nanotechnol.
7
(
1
),
344
(
2016
).
37.
M. J.
Donahue
and
D. G.
Porter
,
OOMMF User's Guide
(
US Department of Commerce, Technology Administration, National Institute of Standards and Technology
,
1999
).
38.
A.
Sakuma
,
S.
Tanigawa
, and
M.
Tokunaga
, “
Micromagnetic studies of inhomogeneous nucleation in hard magnets
,”
J. Magn. Magn. Mater.
84
(
1–2
),
52
58
(
1990
).
39.
J. M.
Shaw
 et al, “
Reversal mechanisms in perpendicularly magnetized nanostructures
,”
Phys. Rev. B
78
(
2
),
024414
(
2008
).
40.
H. D.
Chopra
 et al, “
Nature of magnetization reversal in exchange-coupled polycrystalline NiO-Co bilayers
,”
Phys. Rev. B
61
(
22
),
15312
(
2000
).
41.
T.
Michlmayr
 et al, “
Magnetic field generation with local current injection
,”
J. Phys. D: Appl. Phys.
41
(
5
),
055005
(
2008
).
42.
T.
Klein
 et al, “
Quantitative analysis of interaction between domain walls and magnetic nanoparticles
,”
J. Appl. Phys.
109
(
7
),
07D506
(
2011
).
43.
T.
Klein
 et al, “
Interaction of domain walls and magnetic nanoparticles in giant magnetoresistive nanostrips for biological applications
,”
IEEE Trans. Magn.
49
(
7
),
3414
3417
(
2013
).
44.
P.
Vavassori
 et al, “
Domain wall displacement in Py square ring for single nanometric magnetic bead detection
,”
Appl. Phys. Lett.
93
(
20
),
203502
(
2008
).
45.
Y.
Jing
,
S.-H.
He
, and
J.-P.
Wang
, “
Composition-and phase-controlled high-magnetic-moment Fe Co nanoparticles for biomedical applications
,”
IEEE Trans. Magn.
49
(
1
),
197
200
(
2013
).
46.
Y.
Jing
 et al, “
High-magnetic-moment nanoparticles for biomedicine
,” in
Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2009, EMBC 2009
(IEEE,
2009
).
47.
X.
Liu
and
J.-P.
Wang
, “
Fabrication and morphologies of large directly ordered L10 FePt nanoparticles in gas phase
,”
J. Appl. Phys.
105
(
7
),
07A722
(
2009
).
48.
J.-P.
Wang
 et al, “
Direct preparation of highly ordered L10 phase FePt Nanoparticles and Their Shape-Assisted Assembly
,”
IEEE Trans. Magn.
42
(
10
),
3042
3047
(
2006
).
49.
R. C.
O'handley
,
Modern Magnetic Materials: Principles and Applications
(
Wiley
,
New York
,
2000
), Vol.
830622677
.
50.
M.
Gillies
,
J.
Chapman
, and
J.
Kools
, “
Magnetization reversal mechanisms in NiFe/Cu/NiFe/FeMn spin‐valve structures
,”
J. Appl. Phys.
78
(
9
),
5554
5562
(
1995
).
51.
V.
Gornakov
 et al, “
Experimental study of magnetization reversal processes in nonsymmetric spin valve
,”
J. Appl. Phys.
81
(
8
),
5215
5217
(
1997
).
You do not currently have access to this content.