The crystallization mechanisms of prototypical GeTe phase-change material thin films have been investigated by in situ scanning transmission electron microscopy annealing experiments. A novel sample preparation method has been developed to improve sample quality and stability during in situ annealing, enabling quantitative analysis and live recording of phase change events. Results show that for an uncapped 100 nm thick GeTe layer, exposure to air after fabrication leads to composition changes which promote heterogeneous nucleation at the oxidized surface. We also demonstrate that protecting the GeTe layer with a 10 nm SiN capping layer prevents nucleation at the surface and allows volume nucleation at a temperature 50 °C higher than the onset of crystallization in the oxidized sample. Our results have important implications regarding the integration of these materials in confined memory cells.

1.
Phase Change Materials
, edited by
S.
Raoux
and
M.
Wuttig
(
Springer
,
Boston, MA, USA
,
2009
).
2.
V. L.
Deringer
,
R.
Dronskowski
, and
M.
Wuttig
,
Adv. Funct. Mater.
25
,
6343
(
2015
).
3.
G. W.
Burr
,
M. J.
Breitwisch
,
M.
Franceschini
,
D.
Garetto
,
K.
Gopalakrishnan
,
B.
Jackson
,
B.
Kurdi
,
C.
Lam
,
L. A.
Lastras
,
A.
Padilla
,
B.
Rajendran
,
S.
Raoux
, and
R. S.
Shenoy
,
J. Vacuum Sci. Technol. B: Microelectron. Nanometer Struct.
28
,
223
(
2010
).
4.
G.
Navarro
,
V.
Sousa
,
A.
Persico
,
N.
Pashkov
,
A.
Toffoli
,
J.-C.
Bastien
,
L.
Perniola
,
S.
Maitrejean
,
A.
Roule
,
P.
Zuliani
,
R.
Annunziata
, and
B.
De Salvo
,
Solid-State Electron.
89
,
93
(
2013
).
5.
G.
Bruns
,
P.
Merkelbach
,
C.
Schlockermann
,
M.
Salinga
,
M.
Wuttig
,
T. D.
Happ
,
J. B.
Philipp
, and
M.
Kund
,
Appl. Phys. Lett.
95
,
043108
(
2009
).
6.
S.
Raoux
,
B.
Muñoz
,
H.-Y.
Cheng
, and
J. L.
Jordan-Sweet
,
Appl. Phys. Lett.
95
,
143118
(
2009
).
7.
N.
Ohshima
,
J. Appl. Phys.
79
,
8357
(
1996
).
8.
R.
Pandian
,
B. J.
Kooi
,
J. T. M.
De Hosson
, and
A.
Pauza
,
J. Appl. Phys.
100
,
123511
(
2006
).
9.
R. E.
Simpson
,
M.
Krbal
,
P.
Fons
,
A. V.
Kolobov
,
J.
Tominaga
,
T.
Uruga
, and
H.
Tanida
,
Nano Lett.
10
,
414
(
2010
).
10.
S.
Raoux
,
J. L.
Jordan-Sweet
, and
A. J.
Kellock
,
J. Appl. Phys.
103
,
114310
(
2008
).
11.
E.
Gourvest
,
B.
Pelissier
,
C.
Vallée
,
A.
Roule
,
S.
Lhostis
, and
S.
Maitrejean
,
J. Electrochem. Soc.
159
,
H373
(
2012
).
12.
L. V.
Yashina
,
R.
Püttner
,
V. S.
Neudachina
,
T. S.
Zyubina
,
V. I.
Shtanov
, and
M. V.
Poygin
,
J. Appl. Phys.
103
,
094909
(
2008
).
13.
P.
Noé
,
C.
Sabbione
,
N.
Bernier
,
N.
Castellani
,
F.
Fillot
, and
F.
Hippert
,
Acta Mater.
110
,
142
(
2016
).
14.
S.
Meister
,
S. B.
Kim
,
J. J.
Cha
,
H.-S. P.
Wong
, and
Y.
Cui
,
ACS Nano
5
,
2742
(
2011
).
15.
J. W. L.
Yim
,
B.
Xiang
, and
J.
Wu
,
J. Am. Chem. Soc.
131
(
40
),
14526
(
2009
).
16.
M. K.
Santala
,
B. W.
Reed
,
T.
Topuria
,
S.
Raoux
,
S.
Meister
,
Y.
Cui
,
T.
LaGrange
,
G. H.
Campbell
, and
N. D.
Browning
,
J. Appl. Phys.
111
,
024309
(
2012
).
17.
R.
Pandian
,
B. J.
Kooi
,
J. T. M.
De Hosson
, and
A.
Pauza
,
J. Appl. Phys.
101
,
053529
(
2007
).
18.
L. F.
Allard
,
W. C.
Bigelow
,
M.
Jose-Yacaman
,
D. P.
Nackashi
,
J.
Damiano
, and
S. E.
Mick
,
Microsc. Res. Tech.
72
,
208
(
2009
).
19.
X.
Zhou
,
W.
Dong
,
H.
Zhang
, and
R. E.
Simpson
,
Sci. Rep.
5
,
11150
(
2015
).
20.
X.
Zhou
,
Y.
Du
,
J. K.
Behera
,
L.
Wu
,
Z.
Song
, and
R. E.
Simpson
,
ACS Appl. Mater. Interfaces
8
,
20185
(
2016
).
21.
M. H.
Jang
,
S. J.
Park
,
D. H.
Lim
,
M.-H.
Cho
,
K. H.
Do
,
D.-H.
Ko
, and
H. C.
Sohn
,
Appl. Phys. Lett.
95
,
012102
(
2009
).
22.
M.
Libera
and
M.
Chen
,
J. Appl. Phys.
73
,
2272
(
1993
).
23.
E.
Carria
,
A. M.
Mio
,
S.
Gibilisco
,
M.
Miritello
,
C.
Bongiorno
,
M. G.
Grimaldi
, and
E.
Rimini
,
J. Electrochem. Soc.
159
,
H130
(
2012
).
24.
K.
Santala
,
B. W.
Reed
,
S.
Raoux
,
T.
Topuria
,
T.
LaGrange
, and
G. H.
Campbell
,
Appl. Phys. Lett.
102
,
174105
(
2013
).

Supplementary Material

You do not currently have access to this content.