The effects of post-growth annealing in ultrahigh vacuum (UHV) on the temperature-dependent transport properties of single-crystal, full-Heusler CoFe/MgO/Co2MnSi magnetic tunnel junctions (MTJs) grown by molecular beam epitaxy have been correlated with in-situ X-ray photoelectron spectroscopy (XPS) studies of the MgO/Co2MnSi interface. CoFe and MgO layers were grown on single-crystal Co2MnSi at room temperature and annealed post growth. The structures were found to be epitaxial and single-crystal before and after annealing as assessed by in-situ reflection high-energy electron diffraction (RHEED). While annealing has little effect on RHEED patterns, post-growth annealing at temperatures as low as 200 °C has a dramatic effect on tunnel magnetoresistance and transport properties. XPS measurements conducted on MgO/Co2MnSi structures reveal the presence of interfacial Mn and Si oxides which form as a result of the e-beam deposition process used for MgO. Mn oxides are observed to be reduced upon UHV annealing with a corresponding migration of oxygen from the MgO/Co2MnSi interface into the MgO. In contrast to the case of Mn oxides, Si oxides were not significantly reduced following annealing at 300 °C. Transport measurements on fabricated MTJs show an increase in the tunneling magnetoresistance ratio and a significant alteration in the interfacial electronic structure with increasing annealing temperature. The changes observed in transport are interpreted to result from a reduction in interfacial oxides and a corresponding reduction in oxygen vacancy defect density in the MgO, consistent with XPS results.

1.
C.
Chappert
,
A.
Fert
, and
F.
Nguyen Van Dau
,
Nat. Mater.
6
,
813
(
2007
).
2.
S.
Mao
,
Y.
Chen
,
F.
Liu
,
X.
Chen
,
B.
Xu
,
P.
Lu
,
M.
Patwari
,
H.
Xi
,
C.
Chang
,
B.
Miller
,
D.
Menard
,
B.
Pant
,
J.
Loven
,
K.
Duxstad
,
S.
Li
,
Z.
Zhang
,
A.
Johnston
,
R.
Lamberton
,
M.
Gubbins
,
T.
McLaughlin
,
J.
Gadbois
,
J.
Ding
,
B.
Cross
,
S.
Xue
, and
P.
Ryan
,
IEEE Trans. Magn.
42
,
2
(
2006
).
3.
I.
Galanakis
and
P.
Mavropoulos
,
J. Phys.: Condens. Matter
19
,
315213
(
2007
).
4.
D.
Djayaprawira
,
K.
Tsunehawa
,
M.
Nagai
,
H.
Maehara
,
S.
Yamagata
,
N.
Watanabe
,
S.
Yuasa
,
Y.
Suzuki
, and
K.
Ando
,
Appl. Phys. Lett.
86
,
092502
(
2005
).
5.
S.
Ikeda
,
J.
Hayakawa
,
Y.
Ashizawa
,
Y. M.
Lee
,
K.
Miura
,
H.
Hasegawa
,
M.
Tsunoda
,
F.
Matsukura
, and
H.
Ohno
,
Appl. Phys. Lett.
93
,
082508
(
2008
).
6.
C.
Park
,
J.-G.
Zhu
,
M.
Moneck
,
Y.
Peng
, and
D.
Laughlin
,
J. Appl. Phys.
99
,
08A901
(
2006
).
7.
W. H.
Butler
,
X.-G.
Zhang
,
T. C.
Schulthess
, and
J. M.
MacLaren
,
Phys. Rev. B
63
,
054416
(
2001
).
8.
P. G.
Mather
,
J. C.
Read
, and
R. A.
Buhrman
,
Phys. Rev. B
73
,
205412
(
2006
).
9.
L.
Seve
,
W.
Zhu
,
B.
Sinkovic
,
J. W.
Freeland
,
I.
Coulthard
,
W. J.
Antel
, Jr.
, and
S. S. P.
Parkin
,
Europhys. Lett.
55
,
439
(
2001
).
10.
A. N.
Chiaramonti
,
D. K.
Schreiben
,
W. F.
Egelhoff
,
D. N.
Seidman
, and
A. K.
Petford-Long
,
Appl. Phys. Lett.
93
,
103113
(
2008
).
11.
J. Y.
Bae
,
W. C.
Lim
,
H. J.
Kim
,
T. D.
Lee
,
K. W.
Kim
, and
T. W.
Kim
,
J. Appl. Phys.
99
,
08T316
(
2006
).
12.
Y.
Sakuraba
,
J.
Nakata
,
M.
Oogane
,
H.
Kubota
,
Y.
Ando
,
A.
Sakuma
, and
T.
Miyazaki
,
Jpn. J. Appl. Phys., Part 2
44
,
L1100
(
2005
).
13.
Y.
Miura
,
H.
Uchida
,
Y.
Oba
,
K.
Nagao
, and
M.
Shirai
,
J. Phys.: Condens. Matter
19
,
365228
(
2007
).
14.
M.
Yamamoto
,
T.
Ishikawa
,
T.
Taira
,
G.
Li
,
K.
Matsuda
, and
T.
Uemura
,
J. Phys.: Condens. Matter
22
,
164212
(
2010
).
15.
S. J.
Hashemifar
,
P.
Kratzer
, and
M.
Scheffler
,
Phys. Rev. Lett.
94
,
096402
(
2005
).
16.
S.
Picozzi
,
A.
Continenza
, and
A. J.
Freeman
,
Phys. Rev. B
69
,
094423
(
2004
).
17.
H.
Liu
,
Y.
Honda
,
T.
Taira
,
K.
Matsuda
,
M.
Arita
,
T.
Uemura
, and
M.
Yamamoto
,
Appl. Phys. Lett.
101
,
132418
(
2012
).
18.
H.
Liu
,
T.
Kawami
,
K.
Moges
,
T.
Uemura
,
M.
Yamamoto
,
F.
Shi
, and
P.
Voyles
,
J. Phys. D: Appl. Phys.
48
,
164001
(
2015
).
19.
K.
Moges
,
Y.
Honda
,
H.
Liu
,
T.
Uemura
,
M.
Yamamoto
,
Y.
Miura
, and
M.
Shirai
,
Phys. Rev. B
93
,
134403
(
2016
).
20.
J.
Schmalhorst
,
S.
Kammerer
,
M.
Sacher
,
G.
Reiss
,
A.
Hutten
, and
A.
Scholl
,
Phys. Rev. B
70
,
024426
(
2004
).
21.
N. D.
Telling
,
P. S.
Keatley
,
G.
van der Laan
,
R. J.
Hicken
,
E.
Arenholz
,
Y.
Sakuraba
,
M.
Oogane
,
Y.
Ando
, and
T.
Miyazaki
,
Phys. Rev. B
74
,
224439
(
2006
).
22.
T.
Saito
,
T.
Katayama
,
T.
Ishikawa
,
M.
Yamamoto
,
D.
Asakura
, and
T.
Koide
,
Appl. Phys. Lett.
91
,
262502
(
2007
).
23.
T.
Saito
,
T.
Katayama
,
T.
Ishikawa
,
M.
Yamamoto
,
D.
Asakura
,
T.
Koide
,
Y.
Miura
, and
M.
Shirai
,
Phys. Rev. B
81
,
144417
(
2010
).
24.
J. W.
Dong
,
L. C.
Chen
,
R. D.
James
,
S.
McKernan
, and
C. J.
Palmstrøm
,
Appl. Phys. Lett.
75
,
10
(
1999
).
25.
W. H.
Gallagher
,
S. S. P.
Parkin
,
Y.
Lu
,
X. P.
Bian
,
A.
Marley
,
K. P.
Roche
,
R. A.
Altman
,
S. A.
Rushton
,
C.
Jahnes
,
T. M.
Shaw
, and
G.
Xiao
,
J. Appl. Phys.
81
,
3741
(
1997
).
26.
See http://srdata.nist.gov/xps/Default.aspx for binding energies of XPS peaks
27.
M. C.
Biesinger
,
B. P.
Payne
,
A. P.
Grosvenor
,
L. W. M.
Lau
,
A. R.
Gerson
,
R.
St
, and
C.
Smart
,
Appl. Surf. Sci.
257
,
2717
(
2011
).
28.
See http://webbook.nist.gov for thermochemical data including enthalpy of formation for elemental oxides
29.
B. H.
Miller
and
E.
Dan Dahlberg
,
Appl. Phys. Lett.
69
,
3632
(
1996
).
30.
T. M.
Wilson
,
Int. J. Quantum Chem.
2
,
269
(
1968
).
31.
Z.
Wen
,
H.
Sukegawa
,
S.
Kasai
,
M.
Hayashi
,
S.
Mitani
, and
K.
Inomata
,
Appl. Phys. Express
5
,
063003
(
2012
).
32.
J. G.
Simmons
,
J. Appl. Phys.
34
,
3
(
1963
).
33.
W. F.
Brinkman
,
R. C.
Dynes
, and
J. M.
Rowell
,
J. Appl. Phys.
41
,
1915
(
1970
).
34.
S.
Zhang
,
P. M.
Levy
,
A. C.
Marley
, and
S. S. P.
Parkin
,
Phys. Rev. Lett.
79
,
3744
(
1997
).
35.
S.
Yuasa
,
T.
Nagahama
,
A.
Fukushima
,
Y.
Suzuki
, and
K.
Ando
,
Nat. Mater.
3
,
868
(
2004
).
36.
S. S. P.
Parkin
,
C.
Kaiser
,
A.
Panchula
,
P. M.
Rice
,
B.
Hughes
,
M.
Samant
, and
S.-H.
Yang
,
Nat. Mater.
3
,
862
(
2004
).
You do not currently have access to this content.