The solid phase epitaxial regrowth (SPER) of SiGe alloys has been studied using atomistic simulation techniques. Molecular Dynamics (MD) simulations reproduce the recrystallization process of amorphous structures created in two different ways: introducing atoms at random positions according to the crystalline density and carefully relaxing the structure; and using a bond switching algorithm by means of ab initio. Activation energies are confronted, and the first method is validated as an efficient way to generate amorphous-crystalline structures suitable to study SPER processes. The MD extracted results show that the SPER rate does not vary monotonically with the Ge composition; instead, activation energies reveal a non-linear behaviour with the addition of Ge, due to the two-part behaviour of the SPER rate: SPER rate itself and a hypothesized extra strain due to the bond length difference. Since SPER is a thermally activated process, nudged elastic band calculations are carried out in order to extend the previous assumption. The energy barrier for an atom to attach to the crystalline phase is computed. The extracted values confirm the presence of the mentioned strain contribution required for an atom to recrystallize when it is not as the same type of the bulk.

1.
S.
Thompson
,
M.
Armstrong
,
C.
Auth
,
S.
Cea
,
R.
Chau
,
G.
Glass
 et al., “
A logic nanotechnology featuring strained-silicon
,”
IEEE Electron Device Lett.
25
,
191
(
2004
).
2.
B.
Seiss
and
D.
Dutartre
, “
Morphology evolution of epitaxial SiGe and Si patterns
,”
Solid-State Electron.
83
,
18
24
(
2013
).
3.
A.
Rodríguez
,
T.
Rodríguez
, and
A.
Sanz-Hervás
, “
Strain compensation by heavy boron doping in SiGe layers grown by solid phase epitaxy
,”
J. Mater. Res.
12
,
1698
(
1997
).
4.
M.
Posselt
and
A.
Gabriel
, “
Atomistic simulation of amorphous germanium and its solid phase epitaxial recrystallization
,”
Phys. Rev. B
80
,
045202
(
2009
).
5.
A.
Payet
,
B.
Sklenard
,
J.
Barbé
,
P.
Batude
,
C.
Licitra
,
A.
Papon
,
J.
Hartmann
,
R.
Gonella
,
P.
Gergaud
, and
I.
Martin-Bragado
, “
Atomistic predictions of substrate orientation impact during SiGe alloys solid phase epitaxial regrowth
,” in
Proceedings of 2016 International Conference on Simulation of Semiconductor Processes and Devices, SISPAD
(
2016
).
6.
A.
Payet
,
B.
Sklenard
,
J.
Barbé
,
P.
Batude
,
C.
Tavernier
,
P.
Gergaud
, and
I.
Martin-Bragado
, “
An atomistic investigation of the composition dependence in SiGe alloys during solid phase epitaxial regrowth
,”
Acta Mater.
106
,
290
294
(
2016
).
7.
T.
Haynes
,
M.
Antonell
,
C. A.
Lee
, and
K.
Jones
, “
Composition dependence of solid phase epitaxy in silicon-germanium alloys: Experiment and theory
,”
Phys. Rev. B
51
,
7762
(
1995
).
8.
R.
Elliman
,
W.
Wong
, and
P.
Kringhoj
, in
Cristallization and Related Phenomena in Amorphous Materials
, edited by
M.
Libera
,
T.
Haynes
,
P.
Cebe
, and
J. E.
Dickinson
(
MRS Symposia Proceedings
,
1994
), Vol.
321
.
9.
L.
Csepregi
,
R. P.
Küllen
,
J. W.
Mayer
, and
T. W.
Sigmon
, “
Regrowth kinetics of amorphous Ge layers created by 74Ge and 28Si implantation of Ge crystals
,”
Solid State Commun.
21
,
1019
(
1977
).
10.
L.
Csepregi
,
E. F.
Kenedy
,
J. W.
Mayer
, and
T. W.
Sigmon
, “
Substrate orientation dependence of the epitaxial regrowth rate from Si-implanted amorphous Si
,”
J. App. Phys.
49
,
3906
(
1978
).
11.
I.
Martin-Bragado
, “
Importance of twin defect formation created by solid-phase epitaxy growth: An atomistic study
,”
Scr. Mater.
66
,
186
(
2012
).
12.
B.
Sklenard
,
J.
Barbé
,
P.
Batude
,
P.
Rivallin
,
S.
Cristoloveanu
, and
I.
Martin-Bragado
, “
An atomistic investigation of the impact of in-plane uniaxial stress during solid phase epitaxial regrowth
,”
App. Phys. Lett.
102
,
151907
(
2013
).
13.
M.
Prieto-Depedro
,
I.
Romero
, and
I.
Martin-Bragado
, “
Multiscale modeling of defect formation during solid-phase epitaxial regrowth of silicon
,”
Acta Mater.
82
,
115
122
(
2015
).
14.
B. C.
Johnson
and
J. C.
McCallum
, “
Dopant-enhanced solid-phase epitaxy in buried amorphous silicon layers
,”
Phys. Rev. B
76
,
045216
(
2007
).
15.
P.
Kringhoj
and
R.
Elliman
, “
Solid-phase epitaxial crystallization of strain-relaxed Si1-xGex alloy layers
,”
Phys. Rev. Lett.
73
,
858
(
1994
).
16.
F.
Spaepen
, “
A structural model for the interface between amorphous and crystalline Si or Ge
,”
Acta Mater.
26
,
1167
(
1978
).
17.
F.
Spaepen
and
D.
Turnbull
, “
Kinetics of motion of crystal-melt interfaces
,”
AIP. Conf. Proc.
50
,
73
83
(
1979
).
18.
M.
Aziz
, “
The mechanism of solid phase epitaxy
,” in
Crucial Issues in Semiconductor Materials and Processing Technologies
, NATO ASI Series Vol. 222, edited by
C.
Soffa
,
F.
Priolo
,
E.
Rimini
, and
J.
Poate
(
Springer
,
1992
).
19.
E.
Lampin
and
C.
Krzeminski
, “
Molecular dynamics simulations of the solid phase epitaxy of Si: Growth mechanism and orientation defects
,”
J. App. Phys.
106
,
063519
(
2009
).
20.
J.
Tersoff
, “
Modeling solid-state chemistry: Interatomic potentials for multicomponent systems
,”
Phys. Rev. B
39
,
5566
(
1989
).
21.
L.
Marqués
,
L.
Pelaz
,
I.
Santos
,
P.
López
, and
R.
Duffy
, “
Molecular dynamics simulations of the regrowth of nanometric multigate Si devices
,”
J. Appl. Phys.
111
,
034302
(
2012
).
22.
S.
Munetoh
,
K.
Moriguchi
,
A.
Shintani
,
K.
Nishihira
, and
T.
Mootola
, “
Molecular dynamics simulations of solid-phase epitaxy of Si: Defect formation process
,”
Phys. Rev. B
64
,
193314
(
2001
).
23.
S. J.
Cook
and
P.
Clancy
, “
Comparison of semi-empirical potential functions for silicon and germanium
,”
Phys. Rev. B
47
,
7686
(
1993
).
24.
See http//lammps.sandia.gov for molecular dynamics open-source code.
25.
J. P.
Dismukes
,
L.
Ekstrom
, and
R. J.
Paff
, “
Lattice parameter and density in germanium-silicon alloys
,”
J. Phys. Chem.
68
,
3021
3027
(
1964
).
26.
A.
Mattoni
and
L.
Colombo
, “
Boron ripening during solid-phase epitaxy of amorphous silicon
,”
Phys. Rev. B
69
,
045204
(
2004
).
27.
W. D.
Luedtke
and
U.
Landman
, “
Preparation and melting of amorphous silicon by molecular-dynamics simulations
,”
Phys. Rev. B
37
,
4656
(
1988
).
28.
F.
Wooten
,
K.
Winer
, and
D.
Weaire
, “
Computer generation of structural models of amorphous Si and Ge
,”
Phys. Rev. Lett.
54
,
1392
(
1985
).
29.
L. A.
Marqués
,
L.
Pelaz
,
M.
Aboy
,
L.
Enríquez
, and
J.
Barbolla
, “
Microscopic description of the irradiation-induced amorphization in silicon
,”
Phys. Rev. Lett.
91
,
135504
(
2003
)
30.
T.
Motooka
, “
Model for amorphization processes in ion-implanted Si
,”
Phys. Rev. B
49
,
16367
(
1994
).
31.
P. J. P.
Tang
,
M. J.
Pullin
, and
C. C.
Philips
, “
Binding energy of the free exciton in indium arsenide
,”
Phys. Rev. B
55
,
4376
(
1997
).
32.
F.
Cargnoni
,
C.
Gatti
, and
L.
Colombo
, “
Formation and annihilation of a bond defect in silicon: An ab initio quantum-mechanical characterization
,”
Phys. Rev. B
57
,
170
(
1998
).
33.
A.
Payet
, “
Physical modelling of junction fabrication processes on FDSOI substrate for 10 nm node and below
,” Ph.D. thesis (
University of Grenoble Alpes
,
2017
).
34.
K.
Laaziri
,
S.
Kycia
,
S.
Roorda
,
M.
Chicoine
, and
J.
Robertson
, “
High resolution radial distribution function of pure amorphous silicon
,”
Phys. Rev. Lett.
82
,
3460
(
1999
).
35.
K. J.
Laidler
and
M. C.
King
, “
Development transition state theory
,”
J. Phys. Chem.
87
,
2657
2664
(
1983
).
36.
G.
Mills
,
H.
Jonsson
, and
G. K.
Schenter
, “
Reversible work transition state theory: Application to dissociative adsorption of hydrogen
,”
Surf. Sci.
324
,
305
377
(
1995
).
37.
H.
Espinosa
and
G.
Bao
,
Nano and Cell Mechanics: Fundamentals and Frontiers
(
John Wiley and Sons
,
2013
).
38.
L.
Pauling
, in
Nature of the Chemical Bond
, edited by
N. Y.
Ithaca
(
Cornell University Press
,
1960
).
You do not currently have access to this content.