We study order transitions and defect formation in a model high-entropy alloy (CuNiCoFe) under ion irradiation by means of molecular dynamics simulations. Using a hybrid Monte-Carlo/molecular dynamics scheme, a model alloy is generated which is thermodynamically stabilized by configurational entropy at elevated temperatures, but partly decomposes at lower temperatures by copper precipitation. Both the high-entropy and the multiphase sample are then subjected to simulated particle irradiation. The damage accumulation is analyzed and compared to an elemental Ni reference system. The results reveal that the high-entropy alloy—independent of the initial configuration—installs a certain fraction of short-range order even under particle irradiation. Moreover, the results provide evidence that defect accumulation is reduced in the high-entropy alloy. This is because the reduced mobility of point defects leads to a steady state of defect creation and annihilation. The lattice defects generated by irradiation are shown to act as sinks for Cu segregation.

1.
Z.
Wang
,
S.
Guo
, and
C. T.
Liu
,
JOM
66
,
1966
(
2014
).
2.
Y. F.
Ye
,
Q.
Wang
,
J.
Lu
,
C. T.
Liu
, and
Y.
Yang
,
Mater. Today
19
,
349
(
2016
).
3.
F.
Otto
,
Y.
Yang
,
H.
Bei
, and
E. P.
George
,
Acta Mater.
61
,
2628
(
2013
).
4.
E. J.
Pickering
and
N. G.
Jones
,
Int. Mater. Rev.
61
,
183
(
2016
).
5.
C. C.
Tasan
,
Y.
Deng
,
K. G.
Pradeep
,
M. J.
Yao
,
H.
Springer
, and
D.
Raabe
,
JOM
66
,
1993
(
2014
).
7.
M.
Widom
,
W. P.
Huhn
,
S.
Maiti
, and
W.
Steurer
,
Metall. Mater. Trans. A
45
,
196
(
2014
).
8.
M.-H.
Tsai
and
J.-W.
Yeh
,
Mater. Res. Lett.
2
,
107
(
2014
).
9.
W. H.
Liu
,
Y.
Wu
,
J. Y.
He
,
Y.
Zhang
,
C. T.
Liu
, and
Z. P.
Lu
,
JOM
66
,
1973
(
2014
).
10.
L.
Xie
,
P.
Brault
,
J.-M.
Bauchire
,
A.-L.
Thomann
, and
L.
Bedra
,
J. Phys. D: Appl. Phys.
47
,
224004
(
2014
).
11.
F.
Tian
,
L. K.
Varga
,
N.
Chen
,
L.
Delczeg
, and
L.
Vitos
,
Phys. Rev. B
87
,
075144
(
2013
).
12.
S.-W.
Kao
,
J.-W.
Yeh
, and
T.-S.
Chin
,
J. Phys: Condens. Matter
20
,
145214
(
2008
).
13.
A.
Haglund
,
M.
Koehler
,
D.
Catoor
,
E. P.
George
, and
V.
Keppens
,
Intermetallics
58
,
62
(
2015
).
14.
F.
Tian
,
L.
Delczeg
,
N.
Chen
,
L. K.
Varga
,
J.
Shen
, and
L.
Vitos
,
Phys. Rev. B
88
,
085128
(
2013
).
15.
S.
Guo
,
Q.
Hu
,
C.
Ng
, and
C. T.
Liu
,
Intermetallics
41
,
96
(
2013
).
16.
C.
Ng
,
J.
Luan
,
Q.
Wang
,
S.
Shi
, and
C.
Liu
,
J. Alloys Compd.
584
,
530
(
2014
).
17.
T.
Egami
,
W.
Guo
,
P. D.
Rack
, and
T.
Nagase
,
Metall. Mater. Trans. A
45
,
180
(
2014
).
18.
Y.
Zhang
,
G. M.
Stocks
,
K.
Jin
,
C.
Lu
,
H.
Bei
,
B. C.
Sales
,
L.
Wang
,
L. K.
Béland
,
R. E.
Stoller
,
G. D.
Samolyuk
,
M.
Caro
,
A.
Caro
, and
W. J.
Weber
,
Nat. Commun.
6
,
8736
(
2015
).
19.
F.
Granberg
,
K.
Nordlund
,
M. W.
Ullah
,
K.
Jin
,
C.
Lu
,
H.
Bei
,
L. M.
Wang
,
F.
Djurabekova
,
W. J.
Weber
, and
Y.
Zhang
,
Phys. Rev. Lett.
116
,
135504
(
2016
).
20.
F.
Granberg
,
F.
Djurabekova
,
E.
Levo
, and
K.
Nordlund
,
Nucl. Inst. Methods Phys. Res., Sect. B.
393
,
114
(
2017
).
21.
T.
Yang
,
S.
Xia
,
S.
Liu
,
C.
Wang
,
S.
Liu
,
Y.
Fang
,
Y.
Zhang
,
J.
Xue
,
S.
Yan
, and
Y.
Wang
,
Sci. Rep.
6
,
32146
(
2016
).
22.
M. W.
Ullah
,
D. S.
Aidhy
,
Y.
Zhang
, and
W. J.
Weber
,
Acta Mater.
109
,
17
(
2016
).
23.
S. M.
Foiles
,
M. I.
Baskes
, and
M. S.
Daw
,
Phys. Rev. B
33
,
7983
(
1986
).
24.
X. W.
Zhou
,
R. A.
Johnson
, and
H. N. G.
Wadley
,
Phys. Rev. B
69
,
144113
(
2004
).
25.
K. T.
Jacob
,
S.
Raj
, and
L.
Rannesh
,
Int. J. Mater. Res.
98
,
776
(
2007
).
26.
S.
Plimpton
,
J. Comp. Phys.
117
,
1
(
1995
).
27.
B.
Sadigh
,
P.
Erhart
,
A.
Stukowski
,
A.
Caro
,
E.
Martinez
, and
L.
Zepeda-Ruiz
,
Phys. Rev. B
85
,
184203
(
2012
).
28.
T.
Brink
,
L.
Koch
, and
K.
Albe
,
Phys. Rev. B
94
,
224203
(
2016
).
29.
K.
Nordlund
, Parcas computer code (2016). The main principles of the molecular dynamics algorithms are presented in Refs. 45 and 75. The adaptive time step and electronic stopping algorithms are the same as in Ref. 76. The 2016 version of the code is published in the online supplementary material to Ref. 19.
30.
H. J. C.
Berendsen
,
J. P. M.
Postma
,
W. F.
van Gunsteren
,
A.
DiNola
, and
J. R.
Haak
,
J. Chem. Phys.
81
,
3684
(
1984
).
31.
J. F.
Ziegler
,
J. P.
Biersack
, and
U.
Littmark
,
The Stopping and Range of Ions in Matter
(
Pergamon
,
New York
,
1985
).
32.
J. F.
Ziegler
, SRIM-96 computer code, private communication (1996).
33.
ASTM Standard E693-94
,
Standard Practice for Characterising Neutron Exposure in Iron and Low Alloy Steels in Terms of Displacements Per Atom (Dpa)
(
ASTM International
1994
).
34.
K.
Nordlund
,
S. J.
Zinkle
,
T.
Suzudo
,
R. S.
Averback
,
A.
Meinander
,
F.
Granberg
,
L.
Malerba
,
R.
Stoller
,
F.
Banhart
,
B.
Weber
,
F.
Willaime
,
S.
Dudarev
, and
D.
Simeone
,
Primary Radiation Damage in Materials: Review of Current Understanding and Proposed New Standard Displacement Damage Model to Incorporate in-Cascade Mixing and Defect Production Efficiency Effects
(
OECD Nuclear Energy Agency
,
Paris, France
,
2015
).
35.
S.
Zhang
,
K.
Nordlund
,
F.
Djurabekova
,
F.
Granberg
,
Y.
Zhang
, and
T. S.
Wang
,
Mater. Res. Lett.
5
(6),
433
439
(
2017
).
36.
37.
A.
Stukowski
,
Model. Simul. Mater. Sci. Eng.
18
,
015012
(
2010
). http://ovito.org/.
38.
G.
Voronoï
,
J. Reine Angew. Math.
133
,
97
(
1908
).
39.
G.
Voronoï
,
J. Reine Angew. Math.
134
,
198
(
1908
).
40.
G.
Voronoï
,
J. Reine Angew. Math.
136
,
67
(
1909
).
41.
W.
Brostow
,
M.
Chybicki
,
R.
Laskowski
, and
J.
Rybicki
,
Phys. Rev. B
57
,
13448
(
1998
).
42.
J. D.
Honeycutt
and
H. C.
Andersen
,
J. Phys. Chem.
91
,
4950
(
1987
).
43.
A.
Stukowski
,
Model. Simul. Mater. Sci. Eng.
20
,
045021
(
2012
).
44.
A.
Stukowski
,
V. V.
Bulatov
, and
A.
Arsenlis
,
Model. Simul. Mater. Sci. Eng.
20
,
085007
(
2012
).
45.
K.
Nordlund
,
M.
Ghaly
,
R. S.
Averback
,
M.
Caturla
,
T.
Diaz de la Rubia
, and
J.
Tarus
,
Phys. Rev. B
57
,
7556
(
1998
).
46.
K.
Nordlund
and
F.
Gao
,
Appl. Phys. Lett.
74
,
2720
(
1999
).
47.
E.
Levo
,
F.
Granberg
,
C.
Fridlund
,
K.
Nordlund
, and
F.
Djurabekova
,
J. Nucl. Mater.
490
,
323
(
2017
).
48.
CRC Handbook of Chemistry and Physics
, 84th ed., edited by
D. R.
Lide
(
CRC Press
,
Boca Raton, Florida, USA
,
2003
).
49.
C.
Kittel
,
Introduction to Solid State Physics
, 8th ed. (
John Wiley & Sons, Inc.
,
2005
).
50.
F.
Cardellini
and
G.
Mazzone
,
Philos. Mag. A
67
,
1289
(
1993
).
51.
V. A.
de la Peña O'Shea
,
I.
de
,
P. R.
Moreira
,
A.
Roldán
, and
F.
Illas
,
J. Chem. Phys.
133
,
024701
(
2010
).
52.
M.
Müller
,
P.
Erhart
, and
K.
Albe
,
J. Phys.: Condens. Matter
19
,
326220
(
2007
).
53.
J.
Gump
,
H.
Xia
,
M.
Chirita
,
R.
Sooryakumar
,
M. A.
Tomaz
, and
G. R.
Harp
,
J. Appl. Phys.
86
,
6005
(
1999
).
54.
J.
Zarestky
and
C.
Stassis
,
Phys. Rev. B
35
,
4500
(
1987
).
55.
S.
Ogata
,
J.
Li
, and
S.
Yip
,
Science
298
,
807
(
2002
).
56.
Z.-H.
Jin
,
P.
Gumbsch
,
K.
Albe
,
E.
Ma
,
K.
Lu
,
H.
Gleiter
, and
H.
Hahn
,
Acta Mater.
56
,
1126
(
2008
).
57.
J. A.
Zimmerman
,
H.
Gao
, and
F. F.
Abraham
,
Model. Simul. Mater. Sci. Eng.
8
,
103
(
2000
).
58.
D. J.
Chakrabarti
,
D. E.
Laughlin
,
S. W.
Chen
, and
Y. A.
Chang
,
Phase Diagrams of Binary Nickel Alloys
(
ASM
,
Metals Park, OH, USA
,
1991
), Chap. Cu–Ni (Copper–Nickel), pp.
85
95
.
59.
D. J.
Chakrabarti
,
D. E.
Laughlin
,
S. W.
Chen
, and
Y. A.
Chang
,
Phase Diagrams of Binary Copper Alloys
(
ASM International, Materials Park
,
OH, USA
,
1994
), Chap. Cu–Ni (Copper–Nickel), pp.
266
270
.
60.
T.
Nishizawa
and
K.
Ishida
,
Bull. Alloy Phase Diagrams
5
,
161
(
1984
).
61.
L. J.
Swartzendruber
,
V. P.
Itkin
, and
C. B.
Alcock
,
J. Phase Equilib.
12
,
288
(
1991
).
62.
L.
Xie
,
P.
Brault
,
A.-L.
Thomann
, and
J.-M.
Bauchire
,
Appl. Surf. Sci.
285
(
Part B
),
810
(
2013
).
63.
E. B.
Tadmor
and
S.
Hai
,
J. Mech. Phys. Solids
51
,
765
(
2003
).
64.
F.
Ercolessi
,
O.
Tomagnini
,
S.
Iarlori
, and
E.
Tosatti
, “
Molecular dynamics simulations of metal surfaces
,” in
Nanosources and Manipulation of Atoms Under High Fields and Temperatures: Applications
(
Kluwer
,
Dordrecht, Netherlands
,
1993
), pp.
185
205
.
65.
K.
Nordlund
,
L.
Wei
,
Y.
Zhong
, and
R. S.
Averback
,
Phys. Rev. B
57
,
R13965(R)
(
1998
).
66.
K.
Nordlund
,
K. O. E.
Henriksson
, and
J.
Keinonen
,
Appl. Phys. Lett.
79
,
3624
(
2001
).
67.
Thermo-Calc Software
, http://www.thermocalc.com for TC Binary Solutions Database, Version 1.0; accessed 26 July
2017
.
68.
J. O.
Andersson
,
T.
Helander
,
L.
Höglund
,
P.
Shi
, and
B.
Sundman
,
Calphad
26
,
273
(
2002
).
69.
B. R.
Coles
,
J. Inst. Met.
84
,
346
(
1956
).
70.
J. K. A.
Clarke
and
T. A.
Spooner
,
J. Phys. D: Appl. Phys.
4
,
1196
(
1971
).
71.
B.
Predel
,
Landolt–Börnstein—Group IV Physical Chemistry Volume 5C: Ca-cd – co-zr
(
Springer-Verlag
,
Berlin/Heidelberg
,
1993
), Chap. Co–Cu (Cobalt–Copper).
72.
W.
Klement
,
Trans Metall Soc. AIME
233
,
1180
(
1965
).
73.
T.
Nishizawa
,
S.
Hao
,
M.
Hasebe
, and
K.
Ishida
,
Acta Metall.
31
,
1403
(
1983
).
74.
W.
Ellis
and
E.
Greiner
,
Trans. ASM
29
,
415
(
1941
).
75.
M.
Ghaly
,
K.
Nordlund
, and
R. S.
Averback
,
Philos. Mag. A
79
,
795
(
1999
).
76.
K.
Nordlund
,
Comput. Mater. Sci.
3
,
448
(
1995
).

Supplementary Material

You do not currently have access to this content.