Two dimensional nanosheets based on boron and Group VA elements are designed and characterized using first principles calculations. B-N, B-P, B-As, B-Sb, and B-Bi are found to possess honeycomb structures where formation energies indicate exothermic reactions. Contrary to B-N, the cases of B-P, B-As, B-Sb, and B-Bi nanosheets are calculated to possess narrow band gaps. In addition, calculations reveal that the electronegativity difference between B and Group VA elements in the designed materials is a good indicator to predict the charge transfer and band gap of the two dimensional materials. Hydrogen adsorption over defect-free B-Sb and B-Bi results in exothermic reactions, while defect-free B-N, B-P, and B-As result in endothermic reactions. The layerability of the designed two dimensional materials is also investigated where the electronic structure of two-layered two dimensional materials is strongly coupled with how the two dimensional materials are layered. Thus, one can consider that the properties of two dimensional materials can be controlled by the composition of two dimensional materials and the structure of layers.

1.
R.
Mas-Balleste
,
C.
Gomez-Navarro
,
J.
Gomez-Herrero
, and
F.
Zamora
,
Nanoscale
3
,
20
(
2011
).
2.
A. K.
Geim
and
K. S.
Novoselov
,
Nat. Mater.
6
,
183
(
2007
).
3.
Y.-H.
Lee
,
X.-Q.
Zhang
,
W.
Zhang
,
M.-T.
Chang
,
C.-T.
Lin
,
K.-D.
Chang
,
Y.-C.
Yu
,
J. T.-W.
Wang
,
C.-S.
Chang
,
L.-J.
Li
 et al.,
Adv. Mater.
24
,
2320
(
2012
).
4.
L.
Song
,
L.
Ci
,
H.
Lu
,
P. B.
Sorokin
,
C.
Jin
,
J.
Ni
,
A. G.
Kvashnin
,
D. G.
Kvashnin
,
J.
Lou
,
B. I.
Yakobson
 et al.,
Nano Lett.
10
,
3209
(
2010
).
5.
Z.
Liu
,
L.
Ma
,
G.
Shi
,
W.
Zhou
,
Y.
Gong
,
S.
Lei
,
X.
Yang
,
J.
Zhang
,
J.
Yu
,
K. P.
Hackenberg
 et al.,
Nat. Nanotechnol.
8
,
119
(
2013
).
6.
B.
Feng
,
J.
Zhang
,
Q.
Zhong
,
W.
Li
,
S.
Li
,
H.
Li
,
P.
Cheng
,
S.
Meng
,
L.
Chen
, and
K.
Wu
,
Nat. Chem.
8
,
563
(
2016
).
7.
A.
Acun
,
L.
Zhang
,
P.
Bampoulis
,
M.
Farmanbar
,
A.
Van Houselt
,
A.
Rudenko
,
M.
Lingenfelder
,
G.
Brocks
,
B.
Poelsema
,
M.
Katsnelson
 et al.,
J. Phys.: Condens. Matter
27
,
443002
(
2015
).
8.
F.
Bonaccorso
,
Z.
Sun
,
T.
Hasan
, and
A.
Ferrari
,
Nat. Photonics
4
,
611
(
2010
).
9.
T.
Low
,
A.
Chaves
,
J. D.
Caldwell
,
A.
Kumar
,
N. X.
Fang
,
P.
Avouris
,
T. F.
Heinz
,
F.
Guinea
,
L.
Martin-Moreno
, and
F.
Koppens
,
Nat. Mater.
16
,
182
(
2017
).
10.
O.
Lopez-Sanchez
,
D.
Lembke
,
M.
Kayci
,
A.
Radenovic
, and
A.
Kis
,
Nat. Nanotechnol.
8
,
497
(
2013
).
11.
K. P.
Loh
,
S. W.
Tong
, and
J.
Wu
,
J. Am. Chem. Soc.
138
,
1095
(
2016
).
12.
B.
Radisavljevic
,
A.
Radenovic
,
J.
Brivio
,
I. V.
Giacometti
, and
A.
Kis
,
Nat. Nanotechnol.
6
,
147
(
2011
).
13.
F.
Schwierz
,
Nat. Nanotechnol.
5
,
487
(
2010
).
14.
Q.
Xiang
,
J.
Yu
, and
M.
Jaroniec
,
J. Am. Chem. Soc.
134
,
6575
(
2012
).
15.
D.
Voiry
,
M.
Salehi
,
R.
Silva
,
T.
Fujita
,
M.
Chen
,
T.
Asefa
,
V. B.
Shenoy
,
G.
Eda
, and
M.
Chhowalla
,
Nano Lett.
13
,
6222
(
2013
).
16.
L.
Qu
,
Y.
Liu
,
J.-B.
Baek
, and
L.
Dai
,
ACS Nano
4
,
1321
(
2010
).
17.
A. K.
Singh
,
H. L.
Zhuang
, and
R. G.
Hennig
,
Phys. Rev. B
89
,
245431
(
2014
).
18.
K.
Takahashi
,
T.
Hussain
,
L.
Takahashi
, and
J. D.
Baran
,
Crystal Growth Des.
16
,
1746
(
2016
).
19.
X.-B.
Li
,
S.-Y.
Xie
,
H.
Zheng
,
W. Q.
Tian
, and
H.-B.
Sun
,
Nanoscale
7
,
18863
(
2015
).
20.
E. S.
Penev
,
A.
Kutana
, and
B. I.
Yakobson
,
Nano Lett.
16
,
2522
(
2016
).
21.
J.
Xu
,
Y.
Chang
,
L.
Gan
,
Y.
Ma
, and
T.
Zhai
,
Adv. Sci.
2
,
1500023
(
2015
).
22.
H.-J.
Zhai
,
Y.-F.
Zhao
,
W.-L.
Li
,
Q.
Chen
,
H.
Bai
,
H.-S.
Hu
,
Z. A.
Piazza
,
W.-J.
Tian
,
H.-G.
Lu
,
Y.-B.
Wu
 et al.,
Nat. Chem.
6
,
727
(
2014
).
23.
H.-J.
Zhai
,
B.
Kiran
,
J.
Li
, and
L.-S.
Wang
,
Nat. Mater.
2
,
827
(
2003
).
24.
L.
Boldrin
,
F.
Scarpa
,
R.
Chowdhury
, and
S.
Adhikari
,
Nanotechnology
22
,
505702
(
2011
).
25.
C.
Jin
,
F.
Lin
,
K.
Suenaga
, and
S.
Iijima
,
Phys. Rev. Lett.
102
,
195505
(
2009
).
26.
J.
Yu
and
W.
Guo
,
Appl. Phys. Lett.
106
,
043107
(
2015
).
27.
A. K.
Geim
and
I. V.
Grigorieva
,
Nature
499
,
419
(
2013
).
28.
J. J.
Mortensen
,
L. B.
Hansen
, and
K. W.
Jacobsen
,
Phys. Rev. B
71
,
035109
(
2005
).
29.
H. J.
Monkhorst
and
J. D.
Pack
,
Phys. Rev. B
13
,
5188
(
1976
).
30.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
31.
G.
Henkelman
,
A.
Arnaldsson
, and
H.
Jónsson
,
Comput. Mater. Sci.
36
,
354
(
2006
).
32.
E.
Sanville
,
S. D.
Kenny
,
R.
Smith
, and
G.
Henkelman
,
J. Comput. Chem.
28
,
899
(
2007
).
33.
J. E.
Enkovaara
,
C.
Rostgaard
,
J. J.
Mortensen
,
J.
Chen
,
M.
Dułak
,
L.
Ferrighi
,
J.
Gavnholt
,
C.
Glinsvad
,
V.
Haikola
,
H.
Hansen
 et al.,
J. Phys.: Condens. Matter
22
,
253202
(
2010
).
34.
I.
Shirotani
,
S.
Shiba
,
K.
Takemura
,
O.
Shimomura
, and
T.
Yagi
,
Phys. B: Condens. Matter
190
,
169
(
1993
).
35.
D.
Schiferl
and
C.
Barrett
,
J. Appl. Crystallogr.
2
,
30
(
1969
).
36.
37.
R.
Brugger
,
R.
Bennion
, and
T.
Worlton
,
Phys. Lett. A
24
,
714
(
1967
).
38.
H.
Şahin
,
S.
Cahangirov
,
M.
Topsakal
,
E.
Bekaroglu
,
E.
Akturk
,
R. T.
Senger
, and
S.
Ciraci
,
Phys. Rev. B
80
,
155453
(
2009
).
39.
T. L.
Cottrell
,
The Strengths of Chemical Bonds
(
Academic Press
,
1958
).
40.
L. C.
Allen
,
J. Am. Chem. Soc.
111
,
9003
(
1989
).
41.
P.
Pyykkö
and
M.
Atsumi
,
Chem. – Eur. J.
15
,
186
(
2009
).
42.
P.
Pyykkö
and
M.
Atsumi
,
Chem. – Eur. J.
15
,
12770
(
2009
).
43.
P.
Pyykkö
,
S.
Riedel
, and
M.
Patzschke
,
Chem. – Eur. J.
11
,
3511
(
2005
).
44.
H. L.
Zhuang
,
A. K.
Singh
, and
R. G.
Hennig
,
Phys. Rev. B
87
,
165415
(
2013
).
45.
L.
Liu
,
Y.
Feng
, and
Z.
Shen
,
Phys. Rev. B
68
,
104102
(
2003
).
46.
S.
Kasap
and
P.
Capper
,
Springer Handbook of Electronic and Photonic Materials
(
Springer Science & Business Media
,
2007
), pp.
54
327
.
47.
M.
Topsakal
,
E.
Aktürk
, and
S.
Ciraci
,
Phys. Rev. B
79
,
115442
(
2009
).
48.
M.
Dion
,
H.
Rydberg
,
E.
Schröder
,
D. C.
Langreth
, and
B. I.
Lundqvist
,
Phys. Rev. Lett.
92
,
246401
(
2004
).
49.
V. L.
Solozhenko
,
G.
Will
, and
F.
Elf
,
Solid State Commun.
96
,
1
(
1995
).
You do not currently have access to this content.