In this work, a fundamental investigation of an industrial (Cr,Al)N reactive high power pulsed magnetron sputtering (HPPMS) process is presented. The results will be used to improve the coating development for the addressed application, which is the tool coating for plastics processing industry. Substrate-oriented plasma diagnostics and deposition of the (Cr,Al)N coatings were performed for a variation of the HPPMS pulse frequency with values from f = 300 Hz to f = 2000 Hz at constant average power P = 2.5 kW and pulse length ton = 40 μs. The plasma was investigated using an oscilloscope, an intensified charge coupled device camera, phase-resolved optical emission spectroscopy, and an energy-dispersive mass spectrometer. The coating properties were determined by means of scanning electron microscopy, glow discharge optical emission spectroscopy, cantilever stress sensors, nanoindentation, and synchrotron X-ray diffraction. Regarding the plasma properties, it was found that the average energy within the plasma is nearly constant for the frequency variation. In contrast, the metal to gas ion flux ratio is changed from JM/JG = 0.51 to JM/JG = 0.10 for increasing frequency. Regarding the coating properties, a structure refinement as well as lower residual stresses, higher universal hardness, and a changing crystal orientation from (111) to (200) were observed at higher frequencies. By correlating the plasma and coating properties, it can be concluded that the change in the gas ion to metal ion flux ratio results in a competitive crystal growth of the film, which results in changing coating properties.

1.
V.
Kouznetsov
,
K.
Macak
,
J. M.
Schneider
,
U.
Helmersson
, and
I.
Petrov
, “
A novel pulsed magnetron sputter technique utilizing very high target power densities
,”
Surf. Coat. Technol.
122
,
290
(
1999
).
2.
D.
Lundin
and
K.
Sarakinos
, “
An introduction to thin film processing using high-power impulse magnetron sputtering
,”
J. Mater. Res.
27
,
780
792
(
2012
).
3.
K.
Sarakinos
,
J.
Alami
, and
S.
Konstantinidis
, “
High power pulsed magnetron sputtering: A review on scientific and engineering state of the art
,”
Surf. Coat. Technol.
204
,
1661
1684
(
2010
).
4.
A.
Anders
, “
A review comparing cathodic arcs and high power impulse magnetron sputtering (HiPIMS)
,”
Surf. Coat. Technol.
257
,
308
325
(
2014
).
5.
J.
Bohlmark
,
J.
Alami
,
C.
Christou
,
A. P.
Ehiasarian
, and
U.
Helmersson
, “
Ionization of sputtered metals in high power pulsed magnetron sputtering
,”
J. Vac. Sci. Technol., A
23
,
18
(
2005
).
6.
G.
Greczynski
,
J.
Lu
,
M. P.
Johansson
,
J.
Jensen
,
I.
Petrov
,
J. E.
Greene
, and
L.
Hultman
, “
Role of Tin+ and Aln+ ion irradiation (n=1,2) during Ti1-xAlxN alloy film growth in a hybrid HIPIMS/magnetron mode
,”
Surf. Coat. Technol.
206
,
4202
4211
(
2012
).
7.
E.
Lewin
,
D.
Loch
,
A.
Montagne
,
A. P.
Ehiasarian
, and
J.
Patscheider
, “
Comparison of Al-Si-N nanocomposite coatings deposited by HIPIMS and DC magnetron sputtering
,”
Surf. Coat. Technol.
232
,
680
689
(
2013
).
8.
K.
Macák
,
V.
Kouznetsov
,
J.
Schneider
, and
U.
Helmersson
, “
Ionized sputter deposition using an extremely high plasma density pulsed magnetron discharge
,”
J. Vac. Sci. Technol. A
18
,
1533
1537
(
2000
).
9.
J.
Alami
,
P. A. O.
Persson
,
D.
Music
,
J. T.
Gudmundsson
,
J.
Böhlmark
, and
U.
Helmersson
, “
Ion-assisted physical vapor deposition for enhanced film properties on nonflat surfaces
,”
J. Vac. Sci. Technol. A
23
(
2
),
278
(
2005
).
10.
K.
Bobzin
,
N.
Bagcivan
,
P.
Immich
,
S.
Bolz
,
R.
Cremer
, and
T.
Leyendecker
, “
Mechanical properties and oxidation behaviour of (Al,Cr)N and (Al,Cr,Si)N coatings for cutting tools deposited by HPPMS
,”
Thin Solid Films
517(3)
,
1251
(
2008
).
11.
M.
Lattemann
,
A. P.
Ehiasarian
,
J.
Bohlmark
,
P. A. O.
Persson
, and
U.
Helmersson
, “
Investigation of high power impulse magnetron sputtering pretreated interfaces for adhesion enhancement of hard coatings on steel
,”
Surf. Coat. Technol.
200
,
6495
(
2006
).
12.
A. P.
Ehiasarian
,
A.
Vetushka
,
Y. A.
Gonzalvo
,
G.
Safran
,
L.
Szekely
, and
P. B.
Barna
, “
Influence of high power impulse magnetron sputtering plasma ionization on the microstructure of TiN thin films
,”
J. Appl. Phys.
109
,
104314
(
2011
).
13.
K.
Bobzin
,
T.
Brögelmann
,
G.
Grundmeier
,
T.
de los Arcos
,
M.
Wiesing
, and
N. C.
Kruppe
, “
(Cr,Al)N/(Cr,Al)ON Oxy-nitride coatings deposited by hybrid. dcMS/HPPMS for plastics processing applications
,”
Surf. Coat. Technol.
308
,
394
403
(
2016
).
14.
G.
Greczynski
,
J.
Jensen
,
J.
Böhlmark
, and
L.
Hultman
, “
Microstructure control of CrNx films during high power impulse magnetron sputtering
,”
Surf. Coat. Technol.
205
,
118
130
(
2010
).
15.
G.
Greczynski
and
L.
Hultman
, “
Time and energy resolved ion mass spectroscopy studies of the ion flux during high power pulsed magnetron sputtering of Cr in Ar and Ar/N2 atmospheres
,”
Vacuum
84
,
1159
1170
(
2010
).
16.
K.
Bobzin
,
N.
Bagcivan
,
S.
Theiß
,
J.
Trieschmann
,
R. H.
Brugnara
,
S.
Preissing
, and
A.
Hecimovic
, “
Influence of Ar/Kr ratio and pulse parameters in a Cr-N high power pulse magnetron sputtering process on plasma and coating properties
,”
J. Vac. Sci. Technol., A
32
,
021513
(
2014
).
17.
N.
Bagcivan
,
K.
Bobzin
,
G.
Grundmeier
,
M.
Wiesing
,
O.
Ozcan
,
C.
Kunze
, and
R. H.
Brugnara
, “
Influence of HPPMS pulse length and inert gas mixture on the properties of (Cr, Al)N coatings
,”
Thin Solid Films
549
,
192
198
(
2013
).
18.
C.
Kunze
,
R. H.
Brugnara
,
N.
Bagcivan
,
K.
Bobzin
, and
G.
Grundmeier
, “
Surface chemistry of PVD (Cr,Al)N coatings deposited by means of direct current and high power pulsed magnetron sputtering
,”
Surf. Interface Anal.
45
,
1884
1892
(
2013
).
19.
N.
Bagcivan
,
K.
Bobzin
,
A.
Ludwig
,
D.
Grochla
, and
R. H.
Brugnara
, “
CrN/AlN nanolaminate coatings deposited via high power pulsed and middle frequency pulsed magnetron sputtering
,”
Thin Solid Films
572
,
153
160
(
2014
).
20.
A. P.
Ehiasarian
,
R.
New
,
W.-D.
Münz
,
L.
Hultman
,
U.
Helmersson
, and
V.
Kouznetsov
, “
Influence of high power densities on the composition of pulsed magnetron plasmas
,”
Vacuum
65
,
147
(
2002
).
21.
K.
Bobzin
,
T.
Brögelmann
,
R. H.
Brugnara
, and
S.
Chromy
, “
Analysis of ion energy distribution at the substrate during a HPPMS (Cr,Al)N process using retarding field energy analyzer and energy resolved mass spectrometer
,”
Thin Solid Films
596
,
140
146
(
2015
).
22.
K.
Bobzin
,
T.
Brögelmann
,
N. C.
Kruppe
, and
M.
Engels
, “
Influence of dcMS and HPPMS in a dcMS/HPPMS hybrid process on plasma and coating properties
,”
Thin Solid Films
620
,
188
196
(
2016
).
23.
K.
Bobzin
,
T.
Brögelmann
,
R. H.
Brugnara
,
M.
Arghavani
,
T.-S.
Yang
,
Y.-Y.
Chang
, and
S.-Y.
Chang
, “
Investigation on plastic behavior of HPPMS CrN, AlN. and CrN/AlN-multilayer coatings using finite element simulation and nanoindentation
,”
Surf. Coat. Technol.
284
,
310
317
(
2015
).
24.
C. V.
Budtz-Jorgensen
, “
Studies of electrical plasma discharges
,” Ph.D. thesis (
Aarhus University
,
2001
).
25.
J.
Benedikt
,
A.
Hecimovic
,
D.
Ellerweg
, and
A.
von Keudell
, “
Quadrupole mass spectrometry of reactive plasmas
,”
J. Phys. D: Appl. Phys.
45
,
403001
(
2012
).
26.
D.
Grochla
, “
Entwicklung und Anwendung von kombinatorischen Methoden und Mikrosensoren zur Messung mechanischer Schichtspannungen und der Schichttemperatur bei reaktiven Plasmabeschichtungsprozessen
,” doctoral thesis (
Ruhr-Universität Bochum
,
2016
).
27.
W. C.
Oliver
and
G. H.
Pharr
, “
An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments
,”
J. Mater. Res.
7
,
1564
(
1992
).
28.
C.
Krywka
,
M.
Paulus
,
C.
Sternemann
,
M.
Volmer
,
A.
Remhof
,
G.
Nowak
,
A.
Nefedov
,
B.
Päter
,
M.
Spiegel
, and
M.
Tolan
, “
The new diffractometer for surface X-ray diffraction at beamline BL9 of DELTA
,”
J. Synchrotron Radiat.
13
,
8
13
(
2006
).
29.
A.
Hecimovic
,
M.
Böke
, and
J.
Winter
, “
The characteristic shape of emission profiles of plasma spokes in HiPIMS: The role of secondary electrons
,”
J. Phys. D: Appl. Phys.
47
,
102003
(
2014
).
30.
M.
Panjan
,
R.
Franz
, and
A.
Anders
, “
Asymmetric particle fluxes fromdrifting ionization zones in sputtering magnetrons
,”
Plasma Sources Sci. Technol.
23
,
025007
(
2014
).
31.
A.
Hecimovic
,
T.
de los Arcos
,
V.
Schulz-von der Gathen
,
M.
Böke
, and
J.
Winter
, “
Temporal evolution of the radial plasma emissivity profile in HIPIMS plasma discharges
,”
Plasma Sources Sci. Technol.
21
,
035017
(
2012
).
32.
C.
Huo
,
M. A.
Raadu
,
D.
Lundin
,
J. T.
Gudmundsson
,
A.
Anders
, and
N.
Brenning
, “
Gas rarefaction and the time evolution of long high-power impulse magnetron sputtering pulses
,”
Plasma Sources Sci. Technol.
21
,
045004
(
2012
).
33.
A.
Hecimovic
,
K.
Burcalova
, and
A. P.
Ehiasarian
, “
Origins of ion energy distribution function (IEDF) in high power impulse magnetron sputtering (HIPIMS) plasma discharge
,”
J. Appl. Phys. D: Appl. Phys.
41
,
095203
(
2008
).
34.
I.
Petrov
,
F.
Adibi
,
J. E.
Greene
,
L.
Hultman
, and
J.-E.
Sundgren
, “
Average energy deposited per atom: A universal parameter for describing ion-assisted film growth?
,”
Appl. Phys. Lett.
63(26)
,
36
38
(
1993
).
35.
G.
Greczynski
and
L.
Hultman
, “
Peak amplitude of target current determines deposition rate loss during high power pulsed magnetron sputtering
,”
Vacuum
124
,
1
4
(
2016
).
36.
K.
Bobzin
,
T.
Brögelmann
,
N. C.
Kruppe
, and
M.
Engels
, “
Space-resolved plasma diagnostics in a dcMS/HPPMS hybrid (Cr,Al)N process
,” paper
Oral presentation at HiPIMS Conference
(
2016
).
37.
R.
Daniel
,
D.
Holec
,
M.
Bartosik
, and
C.
Mitterer
, “
Size effect of thermal expansion and thermal/intrinsic stresses in nanostructured thin films: Experiment and model
,”
Acta Mater.
59
,
6631
6645
(
2011
).
38.
S.
Ulrich
,
H.
Holleck
,
J.
Ye
,
H.
Leiste
,
R.
Loos
,
M.
Stüber
,
P.
Pesch
, and
S.
Sattel
, “
Influence of low energy ion implantation on mechanical properties of magnetron sputtered metastable (Cr,Al)N thin films
,”
Thin Solid Films
437
,
164
169
(
2003
).
39.
R.
Daniel
,
A.
Zeilinger
,
T.
Schöberl
,
B.
Sartory
,
C.
Mitterer
, and
J.
Keckes
, “
Microstructure-controlled depth gradients of mechanical properties in thin nanocrystalline films: Towards structure-property gradient functionalization
,”
J. Appl. Phys.
117
,
235301
(
2015
).
40.
R.
Daniel
,
K. J.
Martinschitz
,
J.
Keckes
, and
C.
Mitterer
, “
The origin of stresses in magnetron-sputtered thin films with zone T structures
,”
Acta Mater.
58
,
2621
(
2010
).
41.
B.
Chason
,
L.
Sheldon
,
J.
Freund
,
J.
Floro
, and
S.
Hearne
, “
Origin of compressive residual stress in polycrystalline thin films
,”
Phys. Rev. Lett.
88
,
156103
(
2002
).
42.
N.
Bagcivan
,
K.
Bobzin
, and
S.
Theiß
, (“
Cr1−xAlx)N: A comparison of direct current, middle frequency pulsed and high power pulsed magnetron sputtering for injection molding components
,”
Thin Solid Films
528
,
180
186
(
2013
).
43.
H.
Ljungcrantz
,
M.
Odén
,
L.
Hultman
,
J. E.
Greene
, and
J.‐E.
Sundgren
, “
Nanoindentation studies of single‐crystal (001)‐, (011)‐, and (111)‐oriented TiN layers on MgO
,”
J. Appl. Phys.
80
,
6725
(
1996
).
44.
L.
Hultman
,
J. E.
Sundgren
,
J. E.
Greene
,
D. B.
Bergstrom
, and
I.
Petrov
, and “
High‐flux low‐energy (≂20 eV) N +2 ion irradiation during TiN deposition by reactive magnetron sputtering. Effects on microstructure and preferred orientation
,”
J. Appl. Phys.
78
(
9
),
5395
5403
(
1995
).
45.
L.
Hultman
,
J. E.
Sundgren
, and
J. E.
Greene
, “
Formation of polyhedral N2 bubbles during reactive sputter deposition of epitaxial TiN(100) films
,”
J. Appl. Phys.
66
,
536
(
1989
).
You do not currently have access to this content.