This study presents new parameters for proton ionisation cross sections in guanine, adenine, thymine, and cytosine based upon the semi-empirical Rudd model. The same model was used to find differential electron cross sections considering a speed scaling procedure. To accelerate computation, the total electron cross sections were obtained using the binary-encounter-Bethe approximation instead of the integrated Rudd formula. The cross sections were implemented in the Geant4 simulation toolkit as Geant4-DNA processes, and simulations were carried out measuring protons lineal energies in spherical micrometric volumes filled with water, adenine, thymine, guanine, and cytosine. Large differences were seen in the lineal energies evaluated for the different materials, with the lineal energy measured in guanine being sometimes twice that of water. This suggests that the cross sections developed here should be considered in biological simulations where cellular substructures are modelled, in contrast to the current approach which approximates these volumes as consisting of liquid water.

1.
Agostinelli
,
S.
,
Allison
,
J.
,
Amako
,
K.
,
Apostolakis
,
J.
,
Araujo
,
H.
 et al., “
Geant4-a simulation toolkit
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
506
,
250
303
(
2003
).
2.
Akar
,
A.
and
Gümüş
,
H.
, “
Electron stopping power in biological compounds for low and intermediate energies with the generalized oscillator strength (GOS) model
,”
Radiat. Phys. Chem.
73
,
196
203
(
2005
).
3.
Akkerman
,
A.
and
Akkerman
,
E.
, “
Characteristics of electron inelastic interactions in organic compounds and water over the energy range 20–10 000 eV
,”
J. Appl. Phys.
86
,
5809
5816
(
1999
).
4.
Allison
,
J.
,
Amako
,
K.
,
Apostolakis
,
J.
,
Araujo
,
H.
,
Dubois
,
P. A
. et al., “
Geant4 developments and applications
,”
IEEE Trans. Nucl. Sci.
53
,
270
278
(
2006
).
5.
Allison
,
J.
,
Amako
,
K.
,
Apostolakis
,
J.
,
Arce
,
P.
,
Asai
,
M.
 et al., “
Recent developments in Geant4
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
835
,
186
225
(
2016
).
6.
Baro
,
J.
,
Sempau
,
J.
,
Fernández-Varea
,
J. M.
, and
Salvat
,
F.
, “
PENELOPE: An algorithm for Monte Carlo simulation of the penetration and energy loss of electrons and positrons in matter
,”
Nucl. Instrum. Methods Phys. Res., Sect. B
100
,
31
46
(
1995
).
7.
Bazin
,
M.
,
Michaud
,
M.
, and
Sanche
,
L.
, “
Absolute cross sections for electronic excitations of cytosine by low energy electron impact
,”
J. Chem. Phys.
133
,
155104
(
2010
).
8.
Bernal
,
M. A.
,
Bordage
,
M. C.
,
Brown
,
J. M. C.
,
Davídková
,
M.
,
Delage
,
E.
 et al., “
Track structure modeling in liquid water: A review of the Geant4-DNA very low energy extension of the Geant4 Monte Carlo simulation toolkit
,”
Phys. Med.
31
,
861
874
(
2015a
).
9.
Bernal
,
M. A.
,
DeAlmeida
,
C. E.
,
Incerti
,
S.
,
Champion
,
C.
,
Ivanchenko
,
V
. et al., “
The influence of DNA configuration on the direct strand break yield
,”
Comput. Math. Methods Med.
2015
,
417501
(
2015b
).
10.
Bernal
,
M. A.
,
Sikansi
,
D.
,
Cavalcante
,
F.
,
Incerti
,
S.
,
Champion
,
C
. et al., “
An atomistic geometrical model of the B-DNA configuration for DNA-radiation interaction simulations
,”
Comput. Phys. Commun.
184
,
2840
2847
(
2013
).
11.
Bernhardt
,
P.
and
Paretzke
,
H. G.
, “
Calculation of electron impact ionization cross sections of DNA using the Deutsch-Märk and Binary-Encounter-Bethe formalisms
,”
Int. J. Mass Spectrom.
223–224
,
599
611
(
2003
).
12.
Boudaiffa
,
B.
,
Cloutier
,
P.
,
Hunting
,
D.
,
Huels
,
M.
, and
Sanche
,
L.
, “
Resonnant formation of DNA strand breaks by low-energy (3 to 20 eV) electrons
,”
Science
287
,
1658
1660
(
2000
).
13.
Bousis
,
C.
,
Emfietzoglou
,
D.
,
Hadjidoukas
,
P.
, and
Nikjoo
,
H.
, “
A Monte Carlo study of absorbed dose distributions in both the vapor and liquid phases of water by intermediate energy electrons based on different condensed-history transport schemes
,”
Phys. Med. Biol.
53
,
3739
3761
(
2008a
).
14.
Bousis
,
C.
,
Emfietzoglou
,
D.
,
Hadjidoukas
,
P.
,
Nikjoo
,
H.
, and
Pathak
,
A.
, “
Electron ionization cross-section calculations for liquid water at high impact energies
,”
Nucl. Instrum. Methods Phys. Res., Sect. B
266
,
1185
1192
(
2008b
).
15.
Briesmeister
,
J. F.
, “
MCNP—A general Monte Carlo N-particle transport code
,”
Report No. LA-13709-M
(
2000
).
16.
Chmelevsky
,
D.
and
Kellerer
,
A. M.
, “
Computation of microdosimetric distributions for small sites
,”
Radiat. Environ. Biophys.
14
,
123
136
(
1977
).
17.
Dingfelder
,
M.
,
Hantke
,
D.
,
Inokuti
,
M.
, and
Paretzke
,
H. G.
, “
Electron inelastic scattering cross sections in liquid water
,”
Radiat. Phys. Chem.
53
,
1
18
(
1998
).
18.
Dingfelder
,
M.
,
Inokuti
,
M.
, and
Paretzke
,
H. G.
, “
Inelastic-collision cross-section of liquid water for interactions of energetic protons
,”
Radiat. Phys. Chem.
59
,
255
275
(
2000
).
19.
Dingfelder
,
M.
,
Ritchie
,
R. H.
,
Turner
,
J. E.
,
Friedland
,
W.
,
Paretzke
,
H. G.
 et al., “
Comparisons of calculations with PARTRAC and NOREC: Transport of electrons in liquid water
,”
Radiat. Res.
169
,
584
594
(
2008
).
20.
Dingfelder
,
M.
,
Toburen
,
L. H.
, and
Paretzke
,
H. G.
, in
The Monte Carlo Method: Versatility Unbounded in a Dynamic Computing World
, Tennessee, 17–21 April 2005 (
American Nuclear Society
,
LaGrange Park
,
2005
).
21.
Emerson
,
L. C.
,
Williams
,
M. W.
,
Tang
,
I.
,
Hamm
,
R. N.
, and
Arakawa
,
E. T.
, “
Optical properties of guanine from 2 to 82 eV
,”
Radiat. Res.
63
,
235
244
(
1975
).
22.
Emfietzoglou
,
D.
,
Karava
,
K.
,
Papamichael
,
G.
, and
Moscovitch
,
M.
, “
Monte Carlo simulation of the energy loss of low-energy electrons in liquid water
,”
Phys. Med. Biol.
48
,
2355
2371
(
2003a
).
23.
Emfietzoglou
,
D.
,
Moscovitch
,
M.
, and
Pathak
,
A.
, “
Inelastic cross-sections of energetic protons in liquid water calculated by model dielectric functions and optical data
,”
Nucl. Instrum. Methods Phys. Res., Sect. B
212
,
101
109
(
2003b
).
24.
Emfietzoglou
,
D.
,
Papamichael
,
G.
,
Pathak
,
A.
,
Fotopoulos
,
A.
, and
Nikjoo
,
H.
, “
Monte-Carlo study of energy deposition by heavy charged particles in sub-cellular volumes
,”
Radiat. Prot. Dosim.
126
,
457
462
(
2007
).
25.
ESTAR
, see http://physics.nist.gov/PhysRefData/Star/Text/ESTAR.html for stopping power and range tables for electrons,
2003
.
26.
Fernandez-Varea
,
J. M.
,
Mayol
,
R.
,
Liljequist
,
D.
, and
Salvat
,
F.
, “
Inelastic scattering of electrons in solids from a generalized oscillator strength model using optical and photoelectric data
,”
J. Phys.: Condens. Matter
5
,
3593
(
1993
).
27.
Francis
,
Z.
,
Incerti
,
S.
,
Capra
,
R.
,
Mascialino
,
B.
,
Montarou
,
G
. et al., “
Molecular scale track structure simulations in liquid water using the Geant4-DNA Monte-Carlo processes
,”
Appl. Radiat. Isot.
69
,
220
226
(
2011a
).
28.
Francis
,
Z.
,
Incerti
,
S.
,
Karamitros
,
M.
,
Tran
,
H. N.
, and
Villagrasa
,
C.
, “
Stopping power and ranges of electrons, protons and alpha particles in liquid water using the Geant4-DNA package
,”
Nucl. Instrum. Methods Phys. Res., Sect. B
269
,
2307
2311
(
2011b
).
29.
Francis
,
Z.
,
Villagrasa
,
C.
, and
Clairand
,
I.
, “
Simulation of DNA damage clustering after proton irradiation using an adapted DBSCAN algorithm
,”
Comput. Methods Programs Biomed.
101
,
265
270
(
2011c
).
30.
Francis
,
Z.
,
Incerti
,
S.
,
Ivanchenko
,
V.
,
Champion
,
C.
,
Karamitros
,
M
. et al., “
Monte Carlo simulation of energy-deposit clustering for ions of the same LET in liquid water
,”
Phys. Med. Biol.
57
,
209
224
(
2012
).
31.
Francis
,
Z.
,
Seif
,
E.
,
Incerti
,
S.
,
Champion
,
C.
,
Karamitros
,
M
. et al., “
Carbon ion fragmentation effects on the nanometric level behind the Bragg peak depth
,”
Phys. Med. Biol.
59
,
7691
(
2014
).
32.
Francis
,
Z.
and
Stypczynska
,
A.
,
Data Mining: New Technologies, Benefits and Privacy Concerns
(
Nova Science Publishers
,
2012
).
33.
Galassi
,
M. E.
,
Champion
,
C.
,
Weck
,
P. F.
,
Rivarola
,
R. D.
,
Fojon
,
O
. et al., “
Quantum-mechanical predictions of DNA and RNA ionization by energetic proton beams
,”
Phys. Med. Biol.
57
,
2081
2099
(
2012
).
34.
Garty
,
G.
,
Schulte
,
R.
,
Shchemelinin
,
S.
,
Leloup
,
C.
,
Assaf
,
G
. et al., “
A nanodosimetric model of radiation-induced clustered DNA damage yields
,”
Phys. Med. Biol.
55
,
761
781
(
2010
).
35.
Gudowska
,
I.
,
Sobolevsky
,
N.
,
Andreo
,
P.
,
Belkic
,
D.
, and
Brahme
,
A.
, “
Ion beam transport in tissue-like media using the Monte Carlo code SHIELD-HIT
,”
Phys. Med. Biol.
49
,
1933
1958
(
2004
).
36.
Hayashi
,
H.
,
Watanabe
,
N.
, and
Udagawa
,
Y.
, “
Optical spectra of liquid water in vacuum UV region by means of inelastic X-ray scattering spectroscopy
,”
J. Chem. Phys.
108
,
823
825
(
1998
).
37.
Heller
,
J. M.
,
Hamm
,
R. N.
,
Birkhoff
,
R. D.
, and
Painter
,
L. R.
, “
Collective oscillation in liquid water
,”
J. Chem. Phys.
60
,
3483
3486
(
1974
).
38.
Henkner
,
K.
,
Sobolevsky
,
N.
,
Jakel
,
O.
, and
Paganetti
,
H.
, “
Test of the nuclear interaction model in SHIELD-HIT and comparison to energy distributions from GEANT4
,”
Phys. Med. Biol.
54
,
N509
N517
(
2009
).
39.
Huels
,
M.
,
Boudaiffa
,
B.
,
Cloutier
,
P.
,
Hunting
,
D.
, and
Sanche
,
L.
, “
Single, double, and multiple double strand breaks induced in DNA by 3-100 eV electrons
,”
J. Am. Chem. Soc.
125
,
4467
4477
(
2003
).
40.
Hwang
,
W.
,
Kim
,
Y. K.
, and
Rudd
,
M. E.
, “
New model for electron‐impact ionization cross sections of molecules
,”
J. Chem. Phys.
104
,
2956
2966
(
1996
).
41.
Incerti
,
S.
,
Ivanchenko
,
A.
,
Karamitros
,
M.
,
Mantero
,
A.
,
Moretto
,
P
. et al., “
Comparison of GEANT4 very low energy cross section models with experimental data in water
,”
Med. Phys.
37
,
4692
4708
(
2010
).
42.
Iriki
,
Y.
,
Kikuchi
,
Y.
,
Imai
,
M.
, and
Itoh
,
A.
, “
Absolute doubly differential cross sections for ionization of adenine by 1.0-MeV protons
,”
Phys. Rev. A
84
,
032704
(
2011a
).
43.
Iriki
,
Y.
,
Kikuchi
,
Y.
,
Imai
,
M.
, and
Itoh
,
A.
, “
Proton-impact ionization cross sections of adenine measured at 0.5 and 2.0 MeV by electron spectroscopy
,”
Phys. Rev. A
84
,
052719
(
2011b
).
44.
Joy
,
D. C.
, see http://web.utk.edu/∼srcutk/htm/interact.htm for a data-base of electron-solid interaction,
2001
.
45.
Karamitros
,
M.
,
Luan
,
S.
,
Bernal
,
M. A.
,
Allison
,
J.
,
Baldacchino
,
G
. et al., “
Diffusion-controlled reactions modeling in Geant4-DNA
,”
J. Comput. Phys.
274
,
841
882
(
2014
).
46.
Kellerer
,
A. M.
and
Chmelevsky
,
D.
, “
Concepts of microdosimetry I. Quantities
,”
Radiat. Environ. Biophys.
12
,
61
69
(
1975a
).
47.
Kellerer
,
A. M.
and
Chmelevsky
,
D.
, “
Concepts of microdosimetry II. Probability distributions of the microdosimetric variables
,”
Radiat. Environ. Biophys.
12
,
205
216
(
1975b
).
48.
Kellerer
,
A. M.
and
Chmelevsky
,
D.
, “
Concepts of microdosimetry III. Mean values of the microdosimetric distributions
,”
Radiat. Environ. Biophys.
12
,
321
335
(
1975c
).
49.
Kim
,
Y. K.
and
Rudd
,
M. E.
, “
Binary-encounter-dipole model for electron-impact ionization
,”
Phys. Rev. A
50
,
3954
3967
(
1994
).
50.
Kim
,
Y.-K.
,
Santos
,
J. P.
, and
Parente
,
F.
, “
Extension of the binary-encounter-dipole model to relativistic incident electrons
,”
Phys. Rev. A
62
,
052710
(
2000
).
51.
Lindborg
,
L.
and
Nikjoo
,
H.
, “
Microdosimetry and radiation quality determinations in radiation protection and radiation therapy
,”
Radiat. Prot. Dosim.
143
,
402
408
(
2011
).
52.
Mozejko
,
P.
and
Sanche
,
L.
, “
Cross section calculations for electron scattering from DNA and RNA bases
,”
Radiat. Environ. Biophys.
42
,
201
211
(
2003
).
53.
Nikjoo
,
H.
,
O'Neill
,
P.
,
Wilson
,
W. E.
, and
Goodhead
,
D. T.
, “
Computational approach for determining the spectrum of DNA damage induced by ionizing radiation
,”
Radiat. Res.
156
,
577
583
(
2001
).
54.
Palajova
,
Z.
,
Spurny
,
F.
, and
Davıdkova
,
M.
, “
Microdosimetry distributions for 40-200 MeV protons
,”
Radiat. Prot. Dosim.
121
,
376
381
(
2006
).
55.
Palmans
,
H.
,
Rabus
,
H.
,
Belchior
,
A. L.
,
Bug
,
M. U.
,
Galer
,
S
. et al., “
Future development of biologically relevant dosimetry
,”
Br. J. Radiol.
88
,
20140392
(
2015
).
56.
Plante
,
I.
and
Cucinotta
,
F.
, “
Ionization and excitation cross sections for the interaction of HZE particles in liquid water and application to Monte Carlo simulation of radiation tracks
,”
New J. Phys.
10
,
125020
(
2008
).
57.
Ponomarev
,
A. L.
and
Sachs
,
R. K.
, “
Polymer chromosome models and Monte Carlo simulations of radiation breaking DNA
,”
Bioinformatics
15
,
957
964
(
1999
).
58.
Rudd
,
M. E.
, “
Cross sections for production of secondary electrons by charged particles
,”
Radiat. Prot. Dosim.
31
,
17
22
(
1990
).
59.
Rudd
,
M. E.
,
Kim
,
Y. K.
,
Madison
,
D. H.
, and
Gay
,
T. J.
, “
Electron production in proton collisions with atoms and molecules: Energy distributions
,”
Rev. Mod. Phys.
64
,
441
490
(
1992
).
60.
Sanche
,
L.
, “
Low energy electron-driven damage in biomolecules
,”
Eur. Phys. J. D
35
,
367
390
(
2005
).
61.
Stewart
,
R. D.
,
Wilson
,
W. E.
,
McDonald
,
J. C.
, and
Strom
,
D. J.
, “
Microdosimetric properties of ionizing electrons in water: A test of the PENELOPE code system
,”
Phys. Med. Biol.
47
,
79
88
(
2002
).
62.
Tan
,
Z.
,
Xia
,
Y.
,
Zhao
,
M.
, and
Liu
,
X.
, “
Proton stopping power in a group of bioorganic compounds over the energy range of 0.05-10 MeV
,”
Nucl. Instrum. Methods Phys. Res., Sect. B
248
,
1
6
(
2006
).
63.
Wilson
,
W. E.
and
Toburen
,
L. H.
, “
Electron emission from proton-hydrocarbon-molecule collisions at 0.3-2.0 MeV
,”
Phys. Rev. A
11
,
1303
1308
(
1975
).
You do not currently have access to this content.