Naturally occurring zinc sulfide (ZnS) contains a substantial amount of iron (Fe) in its crystal structure. This study explores the possible effects of such Fe impurity on the physical properties of its two phases: B3 and B1, crystallizing in a cubic system with zinc blend (ZB, space group: F-43m) and rock salt (RS, space group: Fm-3m) structures. We have performed ab-initio calculations within density functional theory (DFT) to determine the equilibrium volumes of B3- and B1-ZnS phases, doped with Fe in varying concentrations (0% to 25%), and their corresponding lattice structures. Using the enthalpy cross-over, we determine the pressure-dependent B3 to B1 transition as a function of Fe concentration. Our DFT calculations suggest an inverse relation of the transition pressure with Fe content. For pure ZnS, the transition occurs at 17 GPa, which drops to ∼12 GPa for 25% Fe. This study also provides a first-hand analysis of the elastic constants (C11, C12, and C44) to show the effects of Fe impurity on the mechanical properties of ZnS phases. Their values generally drop due to Fe and the differences widen with increasing pressure. Fe causes large softening of C44, especially for the B1 phase. We have also performed phonon calculations to characterize the vibrational properties and explain the pressure dependent structural instability of the B3- ZnS. Finally, our calculations of the electronic structures show a transition of semi-conductor to conductor behavior of ZnS with incorporation of Fe impurity.

1.
S.
Suresh
,
Nanosci. Nanotechnol.
3
,
62
(
2013
).
2.
H.
Zhu
,
S. C.
Su
,
S. F.
Yu
,
W. F.
Zhang
,
C. C.
Ling
, and
H. Y.
Yang
,
IEEE J. Sel. Top. Quantum Electron.
19
,
1501705
(
2013
).
3.
Y. P.
Peng
,
X.
Zou
,
Z. Y.
Bai
,
Y. X.
Leng
,
B. X.
Jiang
,
X. W.
Jiang
, and
L.
Zhang
,
Sci. Rep.
5
,
18365
(
2015
).
4.
X. R.
Chen
,
X. F.
Li
,
L. C.
Cai
, and
J.
Zhu
,
Solid State Commun.
139
,
246
(
2006
).
5.
T.
Jia-Jin
,
J.
Guang-Fu
,
C.
Xiang-Rong
, and
G.
Qing-Quan
,
Commun. Theor. Phys.
53
,
1160
(
2010
).
6.
M.
Bilge
,
S. Ö.
Kart
,
H. H.
Kart
, and
T.
Çağın
,
Mater. Chem. Phys.
111
,
559
(
2008
).
7.
J. E.
Jaffe
,
R.
Pandey
, and
M. J.
Seel
,
Phys. Rev. B
47
,
6299
(
1993
).
8.
L. A.
Xue
and
R.
Raj
,
J. Mater. Sci. Lett.
9
,
818
(
1990
).
9.
A.
Nazzal
and
A.
Qteish
,
Phys. Rev. B
53
,
8262
(
1996
).
10.
Y.
Pan
,
S.
Qu
,
S.
Dong
,
Q.
Cui
,
W.
Zhang
,
X.
Liu
,
J.
Liu
,
B.
Liu
,
C.
Gao
, and
G.
Zou
,
J. Phys. Condens. Matter
14
,
10487
(
2002
).
11.
Y.
Pan
,
S.
Qu
,
C.
Gao
,
Y.
Han
,
J.
Luo
,
Q.
Cui
,
J.
Liu
, and
G.
Zou
,
Chin. Phys. Lett.
21
,
67
(
2004
).
12.
S.
Ves
,
U.
Schwarz
,
N. E.
Christensen
,
K.
Syassen
, and
M.
Cardona
,
Phys. Rev. B
42
,
9113
(
1990
).
13.
T.
Basak
,
M. N.
Rao
,
M. K.
Gupta
, and
S. L.
Chaplot
,
J. Phys. Condens. Matter
24
,
115401
(
2012
).
14.
G. A.
Samara
and
H. G.
Drickamer
,
J. Phys. Chem. Solids
23
,
457
(
1962
).
15.
F. A.
La Porta
,
L.
Gracia
,
J.
Andrés
,
J. R.
Sambrano
,
J. A.
Varela
, and
E.
Longo
,
J. Am. Ceram. Soc.
97
,
4011
(
2014
).
16.
M. S.
Miao
and
W. R. L.
Lambrecht
,
Phys. Rev. Lett.
94
,
225501
(
2005
).
17.
P.
Yang
,
M.
Lu
,
D.
Xu
,
D.
Yuan
,
C.
Song
,
S.
Liu
, and
X.
Cheng
,
Opt. Mater. (Amst).
24
,
497
(
2003
).
18.
R. S.
Kane
,
R. E.
Cohen
, and
R.
Silbey
,
Chem. Mater.
11
,
90
(
1999
).
19.
H.
Hu
and
W.
Zhang
,
Opt. Mater. (Amst).
28
,
536
(
2006
).
20.
W. A.
Deer
,
R. A.
Howie
, and
J.
Zussman
,
An Introduction to the Rock-Forming Minerals
(
Mineralogical Society of Great Britain and Ireland
,
2013
).
21.
M.
Bilge
,
S. Ö.
Kart
,
H. H.
Kart
, and
T.
Cagin
,
J. Achiev. Mater. Manuf. Eng.
31
,
29
(
2008
).
22.
H.
Cui-E
,
Z.
Zhao-Yi
,
C.
Yan
,
C.
Xiang-Rong
, and
C.
Ling-Cang
,
Chin. Phys. B
17
,
3867
(
2008
).
23.
24.
P.
Giannozzi
,
S.
Baroni
,
N.
Bonini
,
M.
Calandra
,
R.
Car
,
C.
Cavazzoni
,
D.
Ceresoli
,
G. L.
Chiarotti
,
M.
Cococcioni
,
I.
Dabo
,
A.
Dal Corso
,
S.
de Gironcoli
,
S.
Fabris
,
G.
Fratesi
,
R.
Gebauer
,
U.
Gerstmann
,
C.
Gougoussis
,
A.
Kokalj
,
M.
Lazzeri
,
L.
Martin-Samos
,
N.
Marzari
,
F.
Mauri
,
R.
Mazzarello
,
S.
Paolini
,
A.
Pasquarello
,
L.
Paulatto
,
C.
Sbraccia
,
S.
Scandolo
,
G.
Sclauzero
,
A. P.
Seitsonen
,
A.
Smogunov
,
P.
Umari
, and
R. M.
Wentzcovitch
,
J. Phys. Condens. Matter
21
,
395502
(
2009
).
25.
Y.
Wang
and
J. P.
Perdew
,
Phys. Rev. B
44
,
13298
(
1991
).
26.
M. C.
Payne
,
M. P.
Teter
,
D. C.
Allan
,
T. A.
Arias
, and
J. D.
Joannopoulos
,
Rev. Mod. Phys.
64
,
1045
(
1992
).
27.
J. D.
Pack
and
H. J.
Monkhorst
,
Phys. Rev. B
16
,
1748
(
1977
).
28.
B. G.
Pfrommer
,
M.
Cote
,
S. G.
Louie
, and
M. L.
Cohen
,
J. Comput. Phys.
131
,
233
(
1997
).
29.
S. D.
Gupta
and
P. K.
Jha
,
Earth Planet. Sci. Lett.
401
,
31
(
2014
).
30.
S. D.
Gupta
,
S. K.
Gupta
,
P. K.
Jha
, and
N. N.
Ovsyuk
,
J. Raman Spectrosc.
44
,
926
(
2013
).
31.
B. B.
Karki
,
M. C.
Warren
,
L.
Stixrude
,
G. J.
Ackland
, and
J.
Crain
,
Phys. Rev. B
55
,
3465
(
1997
).
32.
R. A.
Casali
and
N. E.
Christensen
,
Solid State Commun.
108
,
793
(
1998
).
33.
T. V.
Anil
,
C. S.
Menon
,
K. S. K.
Kumar
, and
K. P.
Jayachandran
,
J. Phys. Chem. Solids
65
,
1053
(
2004
).
34.
X.-X.
Li
,
X.-M.
Tao
,
H.-M.
Chen
,
Y.-F.
Ouyang
, and
Y.
Du
,
Chin. Phys. B
22
,
26201
(
2013
).
35.
D.
Berlincourt
,
H.
Jaffe
, and
L. R.
Shiozawa
,
Phys. Rev.
129
,
1009
(
1963
).
36.
R.
Gangadharan
,
V.
Jayalakshmi
,
J.
Kalaiselvi
,
S.
Mohan
,
R.
Murugan
, and
B.
Palanivel
,
J. Alloys Compd.
359
,
22
(
2003
).
37.
B. A.
Weinstein
,
Solid State Commun.
24
,
595
(
1977
).
38.
M.
Cardona
,
R. K.
Kremer
,
R.
Lauck
,
G.
Siegle
,
A.
Muñoz
,
A. H.
Romero
, and
A.
Schindler
,
Phys. Rev. B
81
,
075207
(
2010
).
39.
B. K.
Sarkar
,
A. S.
Verma
,
S.
Sharma
, and
S. K.
Kundu
,
Phys. Scr.
89
,
75704
(
2014
).
40.
N.
Vagelatos
,
J. Chem. Phys.
60
,
3613
(
1974
).
41.
42.
Y.
Li
,
L. J.
Zhang
,
T.
Cui
,
Y. W.
Li
,
Y. M.
Ma
,
Z.
He
, and
G. T.
Zou
,
J. Phys. Condens. Matter
19
,
425217
(
2007
).
43.
H.
Dixit
,
R.
Saniz
,
D.
Lamoen
, and
B.
Partoens
,
J. Phys. Condens. Matter
22
,
125505
(
2010
).
You do not currently have access to this content.