In this article, we present a refined nanostructuring method, lift-off nanoimprint lithography (LO-NIL), which allows the deposition of high-quality metal nanostructures due to a bilayer resist process and compare it to nano-transfer printing (nTP), a purely additive metal printing technique. LO-NIL and nTP are used as accurate methods for the fabrication of ordered plasmonic metal nanostructure arrays on semiconducting substrates over large areas using the example of gold nanodisks on silicon. The possibility of feature size adjustment in LO-NIL during the fabrication process is especially useful for tuning plasmonic resonance peaks between the visible and the mid-infrared range as well as fine-tuning of these resonances. In UV-VIS-NIR spectroscopic measurements, a significant blueshift in the plasmonic resonance was found for nTP samples compared to the ones fabricated with the lift-off technique. It was concluded that this shift originates from a metal/substrate interface roughness resulting in a change in the dielectric properties of this layer. This finding was verified with finite difference time-domain simulations where a similar trend was found for a model with an assumed thin air gap in this interface. In cyclic voltammetry measurements under illumination, a reduced overpotential by almost 400 mV for CO2 reduction and hydrogen evolution was found for LO-NIL samples.

1.
K.
Kneipp
,
Y.
Wang
,
H.
Kneipp
,
L. T.
Perelman
,
I.
Itzkan
,
R. R.
Dasari
, and
M. S.
Feld
, “
Single molecule detection using surface-enhanced Raman scattering (SERS)
,”
Phys. Rev. Lett.
78
,
1667
1670
(
1997
).
2.
S.
Mahajan
,
M.
Abdelsalam
,
Y.
Suguwara
,
S.
Cintra
,
A.
Russell
,
J.
Baumberg
, and
P.
Bartlett
, “
Tuning plasmons on nano-structured substrates for NIR-SERS
,”
Phys. Chem. Chem. Phys.
9
,
104
109
(
2007
).
3.
S.
Lal
,
N. K.
Grady
,
J.
Kundu
,
C. S.
Levin
,
J. B.
Lassiter
, and
N. J.
Halas
, “
Tailoring plasmonic substrates for surface enhanced spectroscopies
,”
Chem. Soc. Rev.
37
,
898
(
2008
).
4.
M.
Osawa
, “
Dynamic processes in electrochemical reactions studied by surface-enhanced infrared absorption spectroscopy (SEIRAS)
,”
Bull. Chem. Soc. Jpn.
70
,
2861
2880
(
1997
).
5.
L. V.
Brown
,
X.
Yang
,
K.
Zhao
,
B. Y.
Zheng
,
P.
Nordlander
, and
N. J.
Halas
, “
Fan-Shaped Gold Nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA)
,”
Nano Lett.
15
,
1272
1280
(
2015
).
6.
P. J.
Rodríguez-Cantó
,
M.
Martínez-Marco
,
F. J.
Rodríguez-Fortuño
,
B.
Tomás-Navarro
,
R.
Ortuño
,
S.
Peransí-Llopis
, and
A.
,
Martínez
, “
Demonstration of near infrared gas sensing using gold nanodisks on functionalized silicon
,”
Opt. Express
19
,
7664
(
2011
).
7.
E.
Ozbay
, “
Plasmonics: Merging photonics and electronics at nanoscale dimensions
,”
Science
311
,
189
193
(
2006
).
8.
M.
Rycenga
,
C. M.
Cobley
,
J.
Zeng
,
W.
Li
,
C. H.
Moran
,
Q.
Zhang
,
D.
Qin
, and
Y.
Xia
, “
Controlling the synthesis and assembly of silver nanostructures for plasmonic applications
,”
Chem. Rev.
111
,
3669
3712
(
2011
).
9.
S.
Pillai
,
K. R.
Catchpole
,
T.
Trupke
, and
M. A.
Green
, “
Surface plasmon enhanced silicon solar cells
,”
J. Appl. Phys.
101
,
093105
(
2007
).
10.
H. A.
Atwater
and
A.
Polman
, “
Plasmonics for improved photovoltaic devices
,”
Nat. Mater.
9
,
205
213
(
2010
).
11.
P.
Spinelli
,
V. E.
Ferry
,
J.
van de Groep
,
M.
van Lare
,
M. A.
Verschuuren
,
R. E. I.
Schropp
,
H. A.
Atwater
, and
A.
Polman
, “
Plasmonic light trapping in thin-film Si solar cells
,”
J. Opt.
14
,
024002
(
2012
).
12.
X.
Gu
,
T.
Qiu
,
W.
Zhang
, and
P. K.
Chu
, “
Light-emitting diodes enhanced by localized surface plasmon resonance
,”
Nanoscale Res. Lett.
6
,
199
(
2011
).
13.
X.
Chen
,
H.
Zhu
,
J.
Zhao
,
Z.
Zheng
, and
X.
Gao
, “
Visible light driven oxidation of organic contaminants in air with gold nanoparticle catalysts on oxide supports
,”
Angew. Chem.
120
,
5433
5436
(
2008
).
14.
P.
Christopher
,
H.
Xin
, and
S.
Linic
, “
Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures
,”
Nat. Chem.
3
,
467
472
(
2011
).
15.
X.
Ke
,
S.
Sarina
,
J.
Zhao
,
X.
Zhang
,
J.
Chang
, and
H.
Zhu
, “
Tuning the reduction power of supported gold nanoparticle photocatalysts for selective reductions by manipulating the wavelength of visible light irradiation
,”
Chem. Commun.
48
,
3509
(
2012
).
16.
M. J.
Kale
,
T.
Avanesian
, and
P.
Christopher
, “
Direct photocatalysis by plasmonic nanostructures
,”
ACS Catal.
4
,
116
128
(
2014
).
17.
T.
Avanesian
and
P.
Christopher
, “
Adsorbate specificity in hot electron driven photochemistry on catalytic metal surfaces
,”
J. Phys. Chem. C
118
,
28017
28031
(
2014
).
18.
P.
Wang
,
B.
Huang
,
Y.
Dai
, and
M.-H.
Whangbo
, “
Plasmonic photocatalysts: Harvesting visible light with noble metal nanoparticles
,”
Phys. Chem. Chem. Phys.
14
,
9813
(
2012
).
19.
X.
Zhang
,
Y. L.
Chen
,
R.-S.
Liu
, and
D. P.
Tsai
, “
Plasmonic photocatalysis
,”
Rep. Prog. Phys.
76
,
046401
(
2013
).
20.
U.
Guler
,
J. C.
Ndukaife
,
G. V.
Naik
,
A. G. A.
Nnanna
,
A. V.
Kildishev
,
V. M.
Shalaev
, and
A.
Boltasseva
, “
Local heating with lithographically fabricated plasmonic titanium nitride nanoparticles
,”
Nano Lett.
13
,
6078
6083
(
2013
).
21.
J. R.
Adleman
,
D. A.
Boyd
,
D. G.
Goodwin
, and
D.
Psaltis
, “
Heterogenous catalysis mediated by plasmon heating
,”
Nano Lett.
9
,
4417
4423
(
2009
).
22.
C.-W.
Yen
and
M. A.
El-Sayed
, “
Plasmonic field effect on the hexacyanoferrate (III)-thiosulfate electron transfer catalytic reaction on gold nanoparticles: Electromagnetic or thermal?
,”
J. Phys. Chem. C
113
,
19585
19590
(
2009
).
23.
K.-S.
Lee
and
M. A.
El-Sayed
, “
Gold and silver nanoparticles in sensing and imaging: Sensitivity of plasmon response to size, shape, and metal composition
,”
J. Phys. Chem. B
110
,
19220
19225
(
2006
).
24.
C.
Langhammer
,
Z.
Yuan
,
I.
Zorič
, and
B.
Kasemo
, “
Plasmonic properties of supported Pt and Pd nanostructures
,”
Nano Lett.
6
,
833
838
(
2006
).
25.
I.
Zoric
,
M.
Zaech
,
B.
Kasemo
, and
C.
Langhammer
, “
Gold, platinum, and aluminum nanodisk plasmons: Material independence, subradiance, and damping mechanisms
,”
ACS Nano
5
,
2535
2546
(
2011
).
26.
K. L.
Kelly
,
E.
Coronado
,
L. L.
Zhao
, and
G. C.
Schatz
, “
The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment
,”
J. Phys. Chem. B
107
,
668
677
(
2003
).
27.
M.
Chergui
,
A.
Melikyan
, and
H.
Minassian
, “
Calculation of surface plasmon frequencies of two, three, and four strongly interacting nanospheres
,”
J. Phys. Chem. C
113
,
6463
6471
(
2009
).
28.
Y.
Nishijima
,
L.
Rosa
, and
S.
Juodkazis
, “
Surface plasmon resonances in periodic and random patterns of gold nano-disks for broadband light harvesting
,”
Opt. Express
20
,
11466
(
2012
).
29.
M. W.
Knight
,
Y.
Wu
,
J. B.
Lassiter
,
P.
Nordlander
, and
N. J.
Halas
, “
Substrates matter: Influence of an adjacent dielectric on an individual plasmonic nanoparticle
,”
Nano Lett.
9
,
2188
2192
(
2009
).
30.
T. G.
Habteyes
,
S.
Dhuey
,
E.
Wood
,
D.
Gargas
,
S.
Cabrini
,
P. J.
Schuck
,
A. P.
Alivisatos
, and
S. R.
Leone
, “
Metallic adhesion layer induced plasmon damping and molecular linker as a nondamping alternative
,”
ACS Nano
6
,
5702
5709
(
2012
).
31.
W. Q.
Li
,
G.
Wang
,
X. N.
Zhang
,
H. P.
Geng
,
J. L.
Shen
,
L. S.
Wang
,
J.
Zhao
,
L. F.
Xu
,
L. J.
Zhang
,
Y. Q.
Wu
,
R. Z.
Tai
, and
G.
Chen
, “
Geometrical and morphological optimizations of plasmonic nanoarrays for high-performance SERS detection
,”
Nanoscale
7
,
15487
15494
(
2015
).
32.
G. H.
Chan
,
J.
Zhao
,
E. M.
Hicks
,
G. C.
Schatz
, and
R. P.
Van Duyne
, “
Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography
,”
Nano Lett.
7
,
1947
1952
(
2007
).
33.
R.
Glass
,
M.
Müller
, and
J. P.
Spatz
, “
Block copolymer micelle nanolithography
,”
Nanotechnology
14
,
1153
1160
(
2003
).
34.
T.
Lohmüller
,
D.
Aydin
,
M.
Schwieder
,
C.
Morhard
,
I.
Louban
,
C.
Pacholski
, and
J. P.
Spatz
, “
Nanopatterning by block copolymer micelle nanolithography and bioinspired applications
,”
Biointerphases
6
,
MR1
R12
(
2011
).
35.
S. Y.
Chou
, “
Nanoimprint lithography
,”
J. Vac. Sci. Technol. B: Microelectron. Nanometer Struct.
14
,
4129
(
1996
).
36.
R. D.
Nagel
,
T.
Haeberle
,
M.
Schmidt
,
P.
Lugli
, and
G.
Scarpa
, “
Large area nano-transfer printing of sub-50-nm metal nanostructures using low-cost semi-flexible hybrid templates
,”
Nanoscale Res. Lett.
11
,
143
(
2016
).
37.
A.
Mayer
,
S.
Möllenbeck
,
K.
Dhima
,
S.
Wang
, and
H. C.
Scheer
, “
Mechanistic study of lift-off for continuous metal layers after T-NIL
,”
Microelectron. Eng.
88
,
2056
2058
(
2011
).
38.
M.
Cottat
,
N.
Lidgi-Guigui
,
I.
Tijunelyte
,
G.
Barbillon
,
F.
Hamouda
,
P.
Gogol
,
A.
Aassime
,
J.-M.
Lourtioz
,
B.
Bartenlian
, and
M.
de la Chapelle
, “
Soft UV nanoimprint lithography-designed highly sensitive substrates for SERS detection
,”
Nanoscale Res. Lett.
9
,
623
(
2014
).
39.
W.
Hu
,
M.
Zhang
,
R. J.
Wilson
,
A. L.
Koh
,
J.-S.
Wi
,
M.
Tang
,
R.
Sinclair
, and
S. X.
Wang
, “
Fabrication of planar, layered nanoparticles using tri-layer resist templates
,”
Nanotechnology
22
,
185302
(
2011
).
40.
N.
Alayo
,
A.
Conde-Rubio
,
J.
Bausells
,
X.
Borrisé
,
A.
Labarta
,
X.
Batlle
, and
F.
Pérez-Murano
, “
Nanoparticles with tunable shape and composition fabricated by nanoimprint lithography
,”
Nanotechnology
26
,
445302
(
2015
).
41.
R.
Hinogami
,
Y.
Nakamura
,
S.
Yae
, and
Y.
Nakato
, “
An approach to ideal semiconductor electrodes for efficient photoelectrochemical reduction of carbon dioxide by modification with small metal particles
,”
J. Phys. Chem. B
102
,
974
980
(
1998
).
42.
S. N.
Habisreutinger
,
L.
Schmidt-Mende
, and
J. K.
Stolarczyk
, “
Photocatalytic reduction of CO2 on TiO2 and other semiconductors
,”
Angew. Chem. Int. Ed.
52
,
7372
7408
(
2013
).
43.
Y.
Hori
,
K.
Kikuchi
, and
S.
Suzuki
, “
Production of CO and CH4 in electrochemical reduction of CO2 at metal electrodes in aqueous hydrogencarbonate solution
,”
Chem. Lett.
14
,
1695
1698
(
1985
).
44.
J.
Ziegler
,
B.
Kaiser
,
W.
Jaegermann
,
F.
Urbain
,
J.-P.
Becker
,
V.
Smirnov
, and
F.
Finger
, “
Photoelectrochemical and photovoltaic characteristics of amorphous-silicon-based tandem cells as photocathodes for water splitting
,”
ChemPhysChem
15
,
4026
4031
(
2014
).
45.
F.
Urbain
,
K.
Wilken
,
V.
Smirnov
,
O.
Astakhov
,
A.
Lambertz
,
J.-P.
Becker
,
U.
Rau
,
J.
Ziegler
,
B.
Kaiser
,
W.
Jaegermann
, and
F.
Finger
, “
Development of thin film amorphous silicon tandem junction based photocathodes providing high open-circuit voltages for hydrogen production
,”
Int. J. Photoenergy
2014
,
1
10
.
46.
F.
Urbain
,
V.
Smirnov
,
J.-P.
Becker
,
U.
Rau
,
J.
Ziegler
,
B.
Kaiser
,
W.
Jaegermann
, and
F.
Finger
, “
Application and modeling of an integrated amorphous silicon tandem based device for solar water splitting
,”
Sol. Energy Mater. Sol. Cells
140
,
275
280
(
2015
).
47.
P. B.
Johnson
and
R. W.
Christy
, “
Optical constants of the noble metals
,”
Phys. Rev. B
6
,
4370
4379
(
1972
).
48.
E.
Palik
,
Handbook of Optical Constants of Solids
(
Academic Press
,
San Diego, CA
,
1998
).
49.
J. R.
Chelikowsky
and
M. L.
Cohen
, “
Electronic structure of silicon
,”
Phys. Rev. B
10
,
5095
5107
(
1974
).
50.
J. J.
Mock
,
M.
Barbic
,
D. R.
Smith
,
D. A.
Schultz
, and
S.
Schultz
, “
Shape effects in plasmon resonance of individual colloidal silver nanoparticles
,”
J. Chem. Phys.
116
,
6755
(
2002
).
51.
H.
Aouani
,
J.
Wenger
,
D.
Gerard
,
H.
Rigneault
,
E.
Devaux
,
T. W.
Ebbesen
,
F.
Mahdavi
,
T.
Xu
, and
S.
Blair
, “
Crucial role of the adhesion layer on the plasmonic fluorescence enhancement
,”
ACS Nano
3
,
2043
2048
(
2009
).
52.
T.
Siegfried
,
Y.
Ekinci
,
O. J.
Martin
, and
H.
Sigg
, “
Engineering metal adhesion layers that do not deteriorate plasmon resonances
,”
ACS Nano
7
,
2751
2757
(
2013
).
53.
A.
Trügler
,
J.-C.
Tinguely
,
G.
Jakopic
,
U.
Hohenester
,
J. R.
Krenn
, and
A.
Hohenau
, “
Near-field and SERS enhancement from rough plasmonic nanoparticles
,”
Phys. Rev. B
89
,
165409
(
2014
).
54.
A.
Trügler
,
J.-C.
Tinguely
,
J.
Krenn
,
A.
Hohenau
, and
U.
Hohenester
, “
Influence of surface roughness on the optical properties of plasmonic nanoparticles
,”
Phys. Rev. B
83
,
081412
(
2011
); e-print arXiv:1209.5200v1.
55.
J.
Rodríguez-Fernández
,
A. M.
Funston
,
J.
Pérez-Juste
,
R. A.
Álvarez-Puebla
,
L. M.
Liz-Marzán
, and
P.
Mulvaney
, “
The effect of surface roughness on the plasmonic response of individual sub-micron gold spheres
,”
Phys. Chem. Chem. Phys.
11
,
5909
(
2009
).
56.
J.-C.
Tinguely
,
I.
Sow
,
C.
Leiner
,
J.
Grand
,
A.
Hohenau
,
N.
Felidj
,
J.
Aubard
, and
J. R.
Krenn
, “
Gold nanoparticles for plasmonic biosensing: The role of metal crystallinity and nanoscale roughness
,”
Bionanoscience
1
,
128
135
(
2011
).
57.
M. J.
Rost
,
D. A.
Quist
, and
J. W. M.
Frenken
, “
Grains, growth, and grooving
,”
Phys. Rev. Lett.
91
,
026101
(
2003
).
58.
K. P.
Chen
,
V. P.
Drachev
,
J. D.
Borneman
,
A. V.
Kildishev
, and
V. M.
Shalaev
, “
Drude relaxation rate in grained gold nanoantennas
,”
Nano Lett.
10
,
916
922
(
2010
).
59.
M. A.
Green
and
M. J.
Keevers
, “
Optical properties of intrinsic silicon at 300 K
,”
Prog. Photovoltaics: Res. Appl.
3
,
189
192
(
1995
).
60.
B.
Weiler
,
R.
Nagel
,
T.
Albes
,
T.
Haeberle
,
A.
Gagliardi
, and
P.
Lugli
, “
Electrical and morphological characterization of transfer-printed Au/Ti/TiOx/p+-Si nano- and microstructures with plasma-grown titanium oxide layers
,”
J. Appl. Phys.
119
,
145106
(
2016
).
61.
T.
Haeberle
,
F.
Loghin
,
U.
Zschieschang
,
H.
Klauk
, and
P.
Lugli
, “
Carbon nanotube thin-film transistors featuring transfer-printed metal electrodes and a thin, self-grown aluminum oxide gate dielectric
,” in
2015 IEEE 15th International Conference on Nanotechnology (IEEE-NANO)
(
2015
), pp.
160
163
.

Supplementary Material

You do not currently have access to this content.