The relative permittivity of polycrystalline BaTiO3 was measured from –150 °C to 250 °C at compressive bias stresses up to −500 MPa. Mechanical loading shifted the rhombohedral-orthorhombic, orthorhombic-tetragonal, and tetragonal-cubic phase transition temperatures and produced a pronounced broadening of the dielectric softening in the vicinity of all three transitions. The inter-ferroelectric rhombohedral-orthorhombic and orthorhombic-tetragonal phase transitions were found to be less stress sensitive than the ferroelectric-paraelectric transition occurring between tetragonal and cubic phases at the Curie point. The application of compressive stress resulted in a strong suppression of the relative permittivity, such that at the highest applied stress of −500 MPa, the permittivity in the single phase regions away from the phase transitions was found to display only a weak dependence on temperature between −100 °C and 125 °C. The experimental observations closely followed the predictions of a 2-4-6 Landau polynomial wherein the dielectric stiffness and higher-order dielectric stiffness coefficients are linear functions of uniaxial stress.

1.
M. J.
Hoffmann
and
H.
Kungl
,
Curr. Opin. Solid State Mater. Sci.
8
,
51
(
2004
).
2.
S. E.
Park
and
T. R.
Shrout
,
J. Appl. Phys.
82
,
1804
(
1997
).
3.
S. T.
Zhang
,
A. B.
Kounga
,
E.
Aulbach
,
H.
Ehrenberg
, and
J.
Rödel
,
Appl. Phys. Lett.
91
,
112906
(
2007
).
4.
W. F.
Liu
and
X. B.
Ren
,
Phys. Rev. Lett.
103
,
257602
(
2009
).
5.
J.
Rödel
,
W.
Jo
,
K. T. P.
Seifert
,
E.-M.
Anton
,
T.
Granzow
, and
D.
Damjanovic
,
J. Am. Ceram. Soc.
92
,
1153
(
2009
).
6.
B.
Jaffe
,
W. R.
Cook
, and
H.
Jaffe
,
Piezoelectric Ceramics
(
Academic Press
,
London
,
1971
).
7.
G.
Arlt
,
D.
Hennings
, and
G.
de With
,
J. Appl. Phys.
58
,
1619
(
1985
).
8.
C. A.
Randall
,
N.
Kim
,
J. P.
Kucera
,
W. W.
Cao
, and
T. R.
Shrout
,
J. Am. Ceram. Soc.
81
,
677
(
1998
).
10.
D.
Meyerhofer
,
Phys. Rev.
112
,
413
(
1958
).
11.
J.
Suchanicz
,
G.
Stopa
,
K.
Konieczny
,
D.
Wcislo
,
M.
Dziubaniuk
, and
J.
Rymarczyk
,
Ferroelectrics
366
,
3
(
2008
).
12.
F.
Schader
,
E.
Aulbach
,
K.
Webber
, and
G. A.
Rossetti
, Jr.
,
J. Appl. Phys.
113
,
174103
(
2013
).
13.
P. W.
Forsbergh
, Jr.
,
Phys. Rev.
93
,
686
(
1954
).
14.
R. F.
Brown
,
Can. J. Phys.
39
,
741
(
1961
).
15.
G.
Shirane
and
K.
Sato
,
J. Phys. Soc. Jpn.
6
,
20
(
1951
).
16.
O.
Steiner
,
A. K.
Tagantsev
,
E. L.
Colla
, and
N.
Setter
,
J. Euro. Ceram. Soc.
19
,
1243
(
1999
).
17.
P.
Ci
,
L.
Zhang
,
G.
Liu
, and
S.
Dong
,
Appl. Phys. Lett.
105
,
072903
(
2014
).
18.
G. A.
Samara
,
Phys. Rev.
151
,
378
(
1966
).
19.
A. K.
Goswami
,
J. Phys. Soc. Jpn.
21
,
1037
(
1966
).
20.
A. K.
Goswami
and
L. E.
Cross
,
Phys. Rev.
171
,
549
(
1968
).
21.
G. A.
Samara
,
T.
Sakudo
, and
K.
Yoshimitsu
,
Phys. Rev. Lett.
35
,
1767
(
1975
).
22.
23.
S.
Lucato
,
D. C.
Lupascu
,
M.
Kamlah
,
J.
Rödel
, and
C. S.
Lynch
,
Acta Mater.
49
,
2751
(
2001
).
24.
J. H.
Haeni
,
P.
Irvin
,
W.
Chang
,
R.
Uecker
,
P.
Reiche
,
Y. L.
Li
,
S.
Choudhury
,
W.
Tian
,
M. E.
Hawley
,
B.
Craigo
,
A. K.
Tagantsev
,
X. Q.
Pan
,
S. K.
Streiffer
,
L. Q.
Chen
,
S. W.
Kirchoefer
,
J.
Levy
, and
D. G.
Schlom
,
Nature
430
,
758
(
2004
).
25.
K. J.
Choi
,
M.
Biegalski
,
Y. L.
Li
,
A.
Sharan
,
J.
Schubert
,
R.
Uecker
,
P.
Reiche
,
Y. B.
Chen
,
X. Q.
Pan
,
V.
Gopalan
,
L. Q.
Chen
,
D. G.
Schlom
, and
C. B.
Eom
,
Science
306
,
1005
(
2004
).
26.
G. A.
Rossetti
, Jr.
,
L. E.
Cross
, and
K.
Kushida
,
Appl. Phys. Lett.
59
,
2524
(
1991
).
27.
M.
Ahart
,
M.
Somayazulu
,
R. E.
Cohen
,
P.
Ganesh
,
P.
Dera
,
H.-K.
Mao
,
R. J.
Hemley
,
Y.
Ren
,
P.
Liermann
, and
Z.
Wu
,
Nature
451
,
545
(
2008
).
28.
R. J.
Zeches
,
M. D.
Rossell
,
J. X.
Zhang
,
A. J.
Hatt
,
Q.
He
,
C. H.
Yang
,
A.
Kumar
,
C. H.
Wang
,
A.
Melville
,
C.
Adamo
,
G.
Sheng
,
Y. H.
Chu
,
J. F.
Ihlefeld
,
R.
Erni
,
C.
Ederer
,
V.
Gopalan
,
L. Q.
Chen
,
D. G.
Schlom
,
N. A.
Spaldin
,
L. W.
Martin
, and
R.
Ramesh
,
Science
326
,
977
(
2009
).
29.
A.
Kvasov
,
A. K.
Tagantsev
, and
N.
Setter
,
Phys. Rev. B
94
,
054102
(
2016
).
30.
J. C.
Wojdeł
and
J.
Íñiguez
,
Phys. Rev. Lett.
112
,
247603
(
2014
).
31.
V.
Stepkova
,
P.
Marton
, and
J.
Hlinka
,
J. Phys.: Condens. Matter
24
,
212201
(
2012
).
32.
Y.
Takagi
,
E.
Sawaguchi
, and
T.
Akioka
,
J. Phys. Soc. Jpn.
3
,
270
(
1948
).
33.
E. V.
Sinyakov
,
S. A.
Flerova
, and
O. A.
Kubyshki
,
Izv. An SSSR Fiz.
31
,
1768
(
1967
).
34.
G. A.
Samara
,
Ferroelectrics
2
,
277
(
1971
).
35.
K. G.
Webber
,
E.
Aulbach
,
T.
Key
,
M.
Marsilius
,
T.
Granzow
, and
J.
Rödel
,
Acta Mater.
57
,
4614
(
2009
).
36.
37.
G.
Picht
,
K. G.
Webber
,
Y.
Zhang
,
H.
Kungl
,
D.
Damjanovic
, and
M. J.
Hoffmann
,
J. Appl. Phys.
112
,
124101
(
2012
).
38.
D.
Zhou
,
R.
Wang
, and
M.
Kamlah
,
J. Eur. Ceram. Soc.
30
,
2603
(
2010
).
39.
A. B.
Schäufele
and
K. H.
Härdtl
,
J. Am. Ceram. Soc.
79
,
2637
(
1996
).
40.
J. E.
Daniels
,
G.
Picht
,
S.
Kimber
, and
K. G.
Webber
,
Appl. Phys. Lett.
103
,
122902
(
2013
).
41.
H. F.
Kay
and
P.
Vousden
,
London, Edinburgh, Dublin Philos. Mag. J. Sci.
40
,
1019
(
1949
).
42.
H. H.
Wieder
,
Phys. Rev.
99
,
1161
(
1955
).
43.
A. F.
Devonshire
,
Philos. Mag.
40
,
1040
(
1949
).
44.
A. F.
Devonshire
,
Philos. Mag.
42
,
1065
(
1951
).
45.
L.
Benguigui
,
Phys. Status Solidi B
60
,
835
(
1973
).
46.
A. J.
Bell
,
J. Appl. Phys.
89
,
3907
(
2001
).
47.
A. J.
Bell
and
L. E.
Cross
,
Ferroelectrics
59
,
197
(
1984
).
48.
Y. L.
Li
,
L. E.
Cross
, and
L. Q.
Chen
,
J. Appl. Phys.
98
,
064101
(
2005
).
49.
Y. L.
Wang
,
A. K.
Tagantsev
,
D.
Damjanovic
,
N.
Setter
,
V. K.
Yarmarkin
,
A. I.
Sokolov
, and
I. A.
Lukyanchuk
,
J. Appl. Phys.
101
,
104115
(
2007
).
You do not currently have access to this content.